Spaces:
Paused
Paused
| # https://huggingface.co/docs/hub/en/spaces-github-actions | |
| import time | |
| import pandas as pd | |
| import streamlit as st | |
| from opendashboards.assets import io, inspect, metric, plot | |
| # prompt-based completion score stats | |
| # instrospect specific RUN-UID-COMPLETION | |
| # cache individual file loads | |
| # Hotkey churn | |
| DEFAULT_PROJECT = "alpha-validators" | |
| DEFAULT_FILTERS = {"tags": {"$in": [f'1.1.{i}' for i in range(10)]}} | |
| DEFAULT_SELECTED_HOTKEYS = None | |
| DEFAULT_TASK = 'qa' | |
| DEFAULT_COMPLETION_NTOP = 10 | |
| DEFAULT_UID_NTOP = 10 | |
| # Set app config | |
| st.set_page_config( | |
| page_title='Validator Dashboard', | |
| menu_items={ | |
| 'Report a bug': "https://github.com/opentensor/dashboards/issues", | |
| 'About': """ | |
| This dashboard is part of the OpenTensor project. \n | |
| To see runs in wandb, go to: \n | |
| https://wandb.ai/opentensor-dev/alpha-validators/table?workspace=default | |
| """ | |
| }, | |
| layout = "centered" | |
| ) | |
| st.title('Validator :red[Analysis] Dashboard :eyes:') | |
| # add vertical space | |
| st.markdown('#') | |
| st.markdown('#') | |
| with st.spinner(text=f'Checking wandb...'): | |
| df_runs = io.load_runs(project=DEFAULT_PROJECT, filters=DEFAULT_FILTERS, min_steps=10) | |
| metric.wandb(df_runs) | |
| # add vertical space | |
| st.markdown('#') | |
| st.markdown('#') | |
| tab1, tab2, tab3, tab4 = st.tabs(["Raw Data", "UID Health", "Completions", "Prompt-based scoring"]) | |
| ### Wandb Runs ### | |
| with tab1: | |
| st.markdown('#') | |
| st.subheader(":violet[Run] Data") | |
| with st.expander(f'Show :violet[raw] wandb data'): | |
| edited_df = st.data_editor( | |
| df_runs.assign(Select=False).set_index('Select'), | |
| column_config={"Select": st.column_config.CheckboxColumn(required=True)}, | |
| disabled=df_runs.columns, | |
| use_container_width=True, | |
| ) | |
| df_runs_subset = df_runs[edited_df.index==True] | |
| n_runs = len(df_runs_subset) | |
| if n_runs: | |
| df = io.load_data(df_runs_subset, load=True, save=True) | |
| df = inspect.clean_data(df) | |
| print(f'\nNans in columns: {df.isna().sum()}') | |
| df_long = inspect.explode_data(df) | |
| else: | |
| st.info(f'You must select at least one run to load data') | |
| st.stop() | |
| metric.runs(df_long) | |
| st.markdown('#') | |
| st.subheader(":violet[Event] Data") | |
| with st.expander(f'Show :violet[raw] event data for **{n_runs} selected runs**'): | |
| raw_data_col1, raw_data_col2 = st.columns(2) | |
| use_long_checkbox = raw_data_col1.checkbox('Use long format', value=True) | |
| num_rows = raw_data_col2.slider('Number of rows:', min_value=1, max_value=100, value=10, key='num_rows') | |
| st.dataframe(df_long.head(num_rows) if use_long_checkbox else df.head(num_rows), | |
| use_container_width=True) | |
| # step_types = ['all']+['augment','followup','answer']#list(df.name.unique()) | |
| step_types = ['all']+list(df.task.unique()) | |
| ### UID Health ### | |
| # TODO: Live time - time elapsed since moving_averaged_score for selected UID was 0 (lower bound so use >Time) | |
| # TODO: Weight - Most recent weight for selected UID (Add warning if weight is 0 or most recent timestamp is not current) | |
| with tab2: | |
| st.markdown('#') | |
| st.subheader("UID :violet[Health]") | |
| st.info(f"Showing UID health metrics for **{n_runs} selected runs**") | |
| uid_src = st.radio('Select task type:', step_types, horizontal=True, key='uid_src') | |
| df_uid = df_long[df_long.task.str.contains(uid_src)] if uid_src != 'all' else df_long | |
| metric.uids(df_uid, uid_src) | |
| uids = st.multiselect('UID:', sorted(df_uid['uids'].unique()), key='uid') | |
| with st.expander(f'Show UID health data for **{n_runs} selected runs** and **{len(uids)} selected UIDs**'): | |
| st.markdown('#') | |
| st.subheader(f"UID {uid_src.title()} :violet[Health]") | |
| agg_uid_checkbox = st.checkbox('Aggregate UIDs', value=True) | |
| if agg_uid_checkbox: | |
| metric.uids(df_uid, uid_src, uids) | |
| else: | |
| for uid in uids: | |
| st.caption(f'UID: {uid}') | |
| metric.uids(df_uid, uid_src, [uid]) | |
| st.subheader(f'Cumulative completion frequency') | |
| freq_col1, freq_col2 = st.columns(2) | |
| freq_ntop = freq_col1.slider('Number of Completions:', min_value=10, max_value=1000, value=100, key='freq_ntop') | |
| freq_rm_empty = freq_col2.checkbox('Remove empty (failed)', value=True, key='freq_rm_empty') | |
| freq_cumulative = freq_col2.checkbox('Cumulative', value=False, key='freq_cumulative') | |
| freq_normalize = freq_col2.checkbox('Normalize', value=True, key='freq_normalize') | |
| plot.uid_completion_counts(df_uid, uids=uids, src=uid_src, ntop=freq_ntop, rm_empty=freq_rm_empty, cumulative=freq_cumulative, normalize=freq_normalize) | |
| with st.expander(f'Show UID **{uid_src}** leaderboard data for **{n_runs} selected runs**'): | |
| st.markdown('#') | |
| st.subheader(f"UID {uid_src.title()} :violet[Leaderboard]") | |
| uid_col1, uid_col2 = st.columns(2) | |
| uid_ntop = uid_col1.slider('Number of UIDs:', min_value=1, max_value=50, value=DEFAULT_UID_NTOP, key='uid_ntop') | |
| uid_agg = uid_col2.selectbox('Aggregation:', ('mean','min','max','size','nunique'), key='uid_agg') | |
| plot.leaderboard( | |
| df_uid, | |
| ntop=uid_ntop, | |
| group_on='uids', | |
| agg_col='rewards', | |
| agg=uid_agg | |
| ) | |
| with st.expander(f'Show UID **{uid_src}** diversity data for **{n_runs} selected runs**'): | |
| st.markdown('#') | |
| st.subheader(f"UID {uid_src.title()} :violet[Diversity]") | |
| rm_failed = st.checkbox(f'Remove failed **{uid_src}** completions', value=True) | |
| plot.uid_diversty(df, rm_failed) | |
| ### Completions ### | |
| with tab3: | |
| st.markdown('#') | |
| st.subheader('Completion :violet[Leaderboard]') | |
| completion_info = st.empty() | |
| msg_col1, msg_col2 = st.columns(2) | |
| # completion_src = msg_col1.radio('Select one:', ['followup', 'answer'], horizontal=True, key='completion_src') | |
| completion_src = st.radio('Select task type:', step_types, horizontal=True, key='completion_src') | |
| df_comp = df_long[df_long.task.str.contains(completion_src)] if completion_src != 'all' else df_long | |
| completion_info.info(f"Showing **{completion_src}** completions for **{n_runs} selected runs**") | |
| completion_ntop = msg_col2.slider('Top k:', min_value=1, max_value=50, value=DEFAULT_COMPLETION_NTOP, key='completion_ntop') | |
| completions = inspect.completions(df_long, 'completions') | |
| # Get completions with highest average rewards | |
| plot.leaderboard( | |
| df_comp, | |
| ntop=completion_ntop, | |
| group_on='completions', | |
| agg_col='rewards', | |
| agg='mean', | |
| alias=True | |
| ) | |
| with st.expander(f'Show **{completion_src}** completion rewards data for **{n_runs} selected runs**'): | |
| st.markdown('#') | |
| st.subheader('Completion :violet[Rewards]') | |
| completion_select = st.multiselect('Completions:', completions.index, default=completions.index[:3].tolist()) | |
| # completion_regex = st.text_input('Completion regex:', value='', key='completion_regex') | |
| plot.completion_rewards( | |
| df_comp, | |
| completion_col='completions', | |
| reward_col='rewards', | |
| uid_col='uids', | |
| ntop=completion_ntop, | |
| completions=completion_select, | |
| ) | |
| # TODO: show the UIDs which have used the selected completions | |
| with st.expander(f'Show **{completion_src}** completion length data for **{n_runs} selected runs**'): | |
| st.markdown('#') | |
| st.subheader('Completion :violet[Length]') | |
| completion_length_radio = st.radio('Use: ', ['characters','words','sentences'], key='completion_length_radio') | |
| # Todo: use color to identify selected completions/ step names/ uids | |
| plot.completion_length_time( | |
| df_comp, | |
| completion_col='completions', | |
| uid_col='uids', | |
| time_col='timings', | |
| length_opt=completion_length_radio, | |
| ) | |
| ### Prompt-based scoring ### | |
| with tab4: | |
| # coming soon | |
| st.info('Prompt-based scoring coming soon') | |
| st.snow() | |
| # st.dataframe(df_long_long.filter(regex=prompt_src).head()) | |