File size: 12,345 Bytes
7d27dff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import io
import os
import tempfile
import time
import uuid
import cv2
import gradio as gr
import pymupdf
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
# --- Assumed to be in 'utils/utils.py' ---
# The following utility functions are required from your original project structure.
# Ensure you have the 'utils.py' file with these functions.
# Example placeholder for what these functions might do:
try:
from utils.utils import prepare_image, parse_layout_string, process_coordinates
except ImportError:
logger.error("Could not import from 'utils.utils'. Please ensure utils.py is in the correct path.")
# Define dummy functions to allow the script to load, but it will fail at runtime.
def prepare_image(image): return image, None
def parse_layout_string(s): return []
def process_coordinates(bbox, img, dims, prev_box): return 0,0,0,0,0,0,0,0,None
# -----------------------------------------
# --- Global Variables ---
model = None
processor = None
tokenizer = None
@spaces.GPU
def initialize_model():
"""Initializes the Hugging Face model and processor."""
global model, processor, tokenizer
if model is None:
logger.info("Loading DOLPHIN model for PDF to JSON conversion...")
model_id = "ByteDance/Dolphin"
try:
processor = AutoProcessor.from_pretrained(model_id)
model = VisionEncoderDecoderModel.from_pretrained(model_id)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Use half-precision for better performance if on CUDA
if device == "cuda":
model = model.half()
model.eval()
tokenizer = processor.tokenizer
logger.info(f"Model loaded successfully on {device}")
except Exception as e:
logger.error(f"Fatal error during model initialization: {e}")
raise
@spaces.GPU
def model_inference(prompt, image):
"""
Performs inference using the Dolphin model. Handles both single and batch processing.
"""
global model, processor, tokenizer
if model is None:
logger.warning("Model not initialized. Initializing now...")
initialize_model()
is_batch = isinstance(image, list)
images = image if is_batch else [image]
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
device = model.device
# Prepare image tensors
batch_inputs = processor(images, return_tensors="pt", padding=True)
pixel_values_dtype = torch.float16 if device == "cuda" else torch.float32
batch_pixel_values = batch_inputs.pixel_values.to(device, dtype=pixel_values_dtype)
# Prepare prompt tensors
prompts_with_task = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = tokenizer(
prompts_with_task, add_special_tokens=False, return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
# Generate text sequences
outputs = model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
max_length=4096,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# Decode and clean up the output
sequences = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
results = [
seq.replace(prompts_with_task[i], "").replace("<pad>", "").replace("</s>", "").strip()
for i, seq in enumerate(sequences)
]
return results[0] if not is_batch else results
@spaces.GPU
def process_element_batch(elements, prompt, max_batch_size=16):
"""Processes a batch of elements of the same type (e.g., text or tables)."""
results = []
for i in range(0, len(elements), max_batch_size):
batch_elements = elements[i:i + max_batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
prompts_list = [prompt] * len(crops_list)
batch_results = model_inference(prompts_list, crops_list)
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
return results
def convert_all_pdf_pages_to_images(file_path, target_size=896):
"""Converts all pages of a PDF file to a list of image file paths."""
if not file_path or not file_path.lower().endswith('.pdf'):
logger.warning("Not a PDF file. No pages to convert.")
return []
image_paths = []
try:
doc = pymupdf.open(file_path)
for page_num in range(len(doc)):
page = doc[page_num]
scale = target_size / max(page.rect.width, page.rect.height)
mat = pymupdf.Matrix(scale, scale)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
pil_image = Image.open(io.BytesIO(img_data))
# Use a unique filename for each temporary page image
with tempfile.NamedTemporaryFile(suffix=f"_page_{page_num+1}.png", delete=False) as tmp_file:
pil_image.save(tmp_file.name, "PNG")
image_paths.append(tmp_file.name)
doc.close()
except Exception as e:
logger.error(f"Error converting PDF pages to images: {e}")
# Clean up any files that were created before the error
for path in image_paths:
cleanup_temp_file(path)
return []
return image_paths
def process_elements(layout_results, padded_image, dims):
"""Crops and recognizes content for all document elements found in the layout."""
layout_results = parse_layout_string(layout_results)
text_elements, table_elements, figure_results = [], [], []
reading_order = 0
previous_box = None
for bbox, label in layout_results:
try:
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0 and (cropped.shape[0] > 3 and cropped.shape[1] > 3):
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop, "label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
if label == "tab":
table_elements.append(element_info)
elif label == "fig":
figure_results.append({**element_info, "text": "[FIGURE]"}) # Placeholder for figures
else:
text_elements.append(element_info)
reading_order += 1
except Exception as e:
logger.error(f"Error processing element with label {label}: {str(e)}")
continue
recognition_results = figure_results.copy()
if text_elements:
recognition_results.extend(process_element_batch(text_elements, "Read text in the image."))
if table_elements:
recognition_results.extend(process_element_batch(table_elements, "Parse the table in the image."))
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
# Remove the temporary 'crop' key before returning JSON
for res in recognition_results:
res.pop('crop', None)
return recognition_results
def process_page(image_path):
"""Processes a single page image to extract all content and return structured data."""
pil_image = Image.open(image_path).convert("RGB")
# 1. Get layout and reading order
layout_output = model_inference("Parse the reading order of this document.", pil_image)
# 2. Extract content from each element
padded_image, dims = prepare_image(pil_image)
recognition_results = process_elements(layout_output, padded_image, dims)
return recognition_results
def cleanup_temp_file(file_path):
"""Safely deletes a temporary file if it exists."""
try:
if file_path and os.path.exists(file_path):
os.unlink(file_path)
except Exception as e:
logger.warning(f"Failed to cleanup temp file {file_path}: {e}")
@spaces.GPU(duration=120)
def pdf_to_json_converter(pdf_file):
"""
Main function for the Gradio interface. Takes a PDF file, processes all pages,
and returns the structured data as a JSON object.
"""
if pdf_file is None:
return {"error": "No file uploaded. Please upload a PDF file."}
start_time = time.time()
file_path = pdf_file.name
temp_files_created = []
try:
logger.info(f"Starting processing for document: {os.path.basename(file_path)}")
# Convert all PDF pages to images
image_paths = convert_all_pdf_pages_to_images(file_path)
if not image_paths:
raise Exception("Failed to convert PDF to images. The file might be corrupted or not a valid PDF.")
temp_files_created.extend(image_paths)
all_pages_data = []
# Process each page sequentially
for page_idx, image_path in enumerate(image_paths):
logger.info(f"Processing page {page_idx + 1}/{len(image_paths)}")
page_elements = process_page(image_path)
all_pages_data.append({
"page": page_idx + 1,
"elements": page_elements,
})
processing_time = time.time() - start_time
logger.info(f"Document processed successfully in {processing_time:.2f}s")
# Final JSON output structure
final_json = {
"document_info": {
"file_name": os.path.basename(file_path),
"total_pages": len(image_paths),
"processing_time_seconds": round(processing_time, 2),
},
"pages": all_pages_data
}
return final_json
except Exception as e:
logger.error(f"An error occurred during document processing: {str(e)}")
return {"error": str(e), "file_name": os.path.basename(file_path)}
finally:
# Cleanup all temporary image files created during processing
logger.info("Cleaning up temporary files...")
for temp_file in temp_files_created:
cleanup_temp_file(temp_file)
# --- Gradio UI ---
def build_gradio_interface():
"""Builds and returns the simple Gradio UI."""
with gr.Blocks(title="PDF to JSON Converter") as demo:
gr.Markdown(
"""
# PDF to JSON Converter
Upload a multi-page PDF to extract its content into a structured JSON format using the Dolphin model.
"""
)
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(
label="Upload PDF File",
file_types=[".pdf"],
)
submit_btn = gr.Button("Convert to JSON", variant="primary")
with gr.Column(scale=2):
json_output = gr.JSON(label="JSON Output", scale=2)
submit_btn.click(
fn=pdf_to_json_converter,
inputs=[pdf_input],
outputs=[json_output],
)
# Add a clear button for convenience
clear_btn = gr.ClearButton(
value="Clear",
components=[pdf_input, json_output]
)
return demo
# --- Main Execution ---
if __name__ == "__main__":
logger.info("Starting Gradio application...")
try:
# Initialize the model on startup to avoid delays on the first request
initialize_model()
# Build and launch the Gradio interface
app_ui = build_gradio_interface()
app_ui.launch()
except Exception as main_exception:
logger.error(f"Failed to start the application: {main_exception}") |