|
import torch |
|
from diffusers import AutoencoderKLWan, WanPipeline |
|
from diffusers.utils import export_to_video |
|
from diffusers.loaders.lora_conversion_utils import _convert_non_diffusers_lora_to_diffusers |
|
import gradio as gr |
|
import tempfile |
|
import os |
|
import spaces |
|
from huggingface_hub import hf_hub_download |
|
import logging |
|
|
|
|
|
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers" |
|
LORA_REPO_ID = "Kijai/WanVideo_comfy" |
|
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MANUAL_PATCHES_STORE = {} |
|
|
|
def _custom_convert_non_diffusers_wan_lora_to_diffusers(state_dict): |
|
""" |
|
Custom converter for Wan 2.1 T2V LoRA. |
|
Separates LoRA A/B weights for PEFT and diff_b/diff for manual patching. |
|
Stores diff_b/diff in the global MANUAL_PATCHES_STORE. |
|
""" |
|
global MANUAL_PATCHES_STORE |
|
MANUAL_PATCHES_STORE.clear() |
|
|
|
converted_state_dict_for_peft = {} |
|
manual_diff_patches = {} |
|
|
|
|
|
original_state_dict = { |
|
k[len("diffusion_model.") :]: v |
|
for k, v in state_dict.items() |
|
if k.startswith("diffusion_model.") |
|
} |
|
|
|
|
|
block_indices = set() |
|
for k_orig in original_state_dict: |
|
if "blocks." in k_orig: |
|
try: |
|
block_idx_str = k_orig.split("blocks.")[1].split(".")[0] |
|
if block_idx_str.isdigit(): |
|
block_indices.add(int(block_idx_str)) |
|
except (IndexError, ValueError) as e: |
|
logger.warning(f"Could not parse block index from key: {k_orig} due to {e}") |
|
|
|
num_transformer_blocks = max(block_indices) + 1 if block_indices else 0 |
|
if not block_indices and any("blocks." in k for k in original_state_dict): |
|
logger.warning("Found 'blocks.' in keys but could not determine num_transformer_blocks reliably.") |
|
|
|
|
|
|
|
for i in range(num_transformer_blocks): |
|
|
|
for lora_key_part, diffusers_layer_name in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]): |
|
orig_lora_down_key = f"blocks.{i}.self_attn.{lora_key_part}.lora_down.weight" |
|
orig_lora_up_key = f"blocks.{i}.self_attn.{lora_key_part}.lora_up.weight" |
|
target_base_key_peft = f"blocks.{i}.attn1.{diffusers_layer_name}" |
|
target_base_key_manual = f"transformer.blocks.{i}.attn1.{diffusers_layer_name}" |
|
|
|
if orig_lora_down_key in original_state_dict and orig_lora_up_key in original_state_dict: |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_A.weight"] = original_state_dict.pop(orig_lora_down_key) |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key) |
|
|
|
orig_diff_b_key = f"blocks.{i}.self_attn.{lora_key_part}.diff_b" |
|
if orig_diff_b_key in original_state_dict: |
|
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key) |
|
|
|
|
|
for lora_key_part, diffusers_layer_name in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]): |
|
orig_lora_down_key = f"blocks.{i}.cross_attn.{lora_key_part}.lora_down.weight" |
|
orig_lora_up_key = f"blocks.{i}.cross_attn.{lora_key_part}.lora_up.weight" |
|
target_base_key_peft = f"blocks.{i}.attn2.{diffusers_layer_name}" |
|
target_base_key_manual = f"transformer.blocks.{i}.attn2.{diffusers_layer_name}" |
|
|
|
if orig_lora_down_key in original_state_dict and orig_lora_up_key in original_state_dict: |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_A.weight"] = original_state_dict.pop(orig_lora_down_key) |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key) |
|
|
|
orig_diff_b_key = f"blocks.{i}.cross_attn.{lora_key_part}.diff_b" |
|
if orig_diff_b_key in original_state_dict: |
|
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key) |
|
|
|
|
|
for original_ffn_idx, diffusers_ffn_path_part in zip(["0", "2"], ["net.0.proj", "net.2"]): |
|
orig_lora_down_key = f"blocks.{i}.ffn.{original_ffn_idx}.lora_down.weight" |
|
orig_lora_up_key = f"blocks.{i}.ffn.{original_ffn_idx}.lora_up.weight" |
|
target_base_key_peft = f"blocks.{i}.ffn.{diffusers_ffn_path_part}" |
|
target_base_key_manual = f"transformer.blocks.{i}.ffn.{diffusers_ffn_path_part}" |
|
|
|
if orig_lora_down_key in original_state_dict and orig_lora_up_key in original_state_dict: |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_A.weight"] = original_state_dict.pop(orig_lora_down_key) |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key) |
|
|
|
orig_diff_b_key = f"blocks.{i}.ffn.{original_ffn_idx}.diff_b" |
|
if orig_diff_b_key in original_state_dict: |
|
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key) |
|
|
|
|
|
|
|
norm3_diff_key = f"blocks.{i}.norm3.diff" |
|
norm3_diff_b_key = f"blocks.{i}.norm3.diff_b" |
|
target_norm_key_base_manual = f"transformer.blocks.{i}.norm2" |
|
if norm3_diff_key in original_state_dict: |
|
manual_diff_patches[f"{target_norm_key_base_manual}.weight"] = original_state_dict.pop(norm3_diff_key) |
|
if norm3_diff_b_key in original_state_dict: |
|
manual_diff_patches[f"{target_norm_key_base_manual}.bias"] = original_state_dict.pop(norm3_diff_b_key) |
|
|
|
|
|
for attn_type, diffusers_attn_block in zip(["self_attn", "cross_attn"], ["attn1", "attn2"]): |
|
for norm_target_suffix in ["norm_q", "norm_k"]: |
|
orig_norm_diff_key = f"blocks.{i}.{attn_type}.{norm_target_suffix}.diff" |
|
target_norm_key_manual = f"transformer.blocks.{i}.{diffusers_attn_block}.{norm_target_suffix}.weight" |
|
if orig_norm_diff_key in original_state_dict: |
|
manual_diff_patches[target_norm_key_manual] = original_state_dict.pop(orig_norm_diff_key) |
|
|
|
|
|
|
|
patch_emb_diff_b_key = "patch_embedding.diff_b" |
|
if patch_emb_diff_b_key in original_state_dict: |
|
manual_diff_patches["transformer.patch_embedding.bias"] = original_state_dict.pop(patch_emb_diff_b_key) |
|
|
|
|
|
for orig_idx, diffusers_linear_idx in zip(["0", "2"], ["linear_1", "linear_2"]): |
|
orig_lora_down_key = f"text_embedding.{orig_idx}.lora_down.weight" |
|
orig_lora_up_key = f"text_embedding.{orig_idx}.lora_up.weight" |
|
target_base_key_peft = f"condition_embedder.text_embedder.{diffusers_linear_idx}" |
|
target_base_key_manual = f"transformer.condition_embedder.text_embedder.{diffusers_linear_idx}" |
|
if orig_lora_down_key in original_state_dict and orig_lora_up_key in original_state_dict: |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_A.weight"] = original_state_dict.pop(orig_lora_down_key) |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key) |
|
orig_diff_b_key = f"text_embedding.{orig_idx}.diff_b" |
|
if orig_diff_b_key in original_state_dict: |
|
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key) |
|
|
|
|
|
for orig_idx, diffusers_linear_idx in zip(["0", "2"], ["linear_1", "linear_2"]): |
|
orig_lora_down_key = f"time_embedding.{orig_idx}.lora_down.weight" |
|
orig_lora_up_key = f"time_embedding.{orig_idx}.lora_up.weight" |
|
target_base_key_peft = f"condition_embedder.time_embedder.{diffusers_linear_idx}" |
|
target_base_key_manual = f"transformer.condition_embedder.time_embedder.{diffusers_linear_idx}" |
|
if orig_lora_down_key in original_state_dict and orig_lora_up_key in original_state_dict: |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_A.weight"] = original_state_dict.pop(orig_lora_down_key) |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key) |
|
orig_diff_b_key = f"time_embedding.{orig_idx}.diff_b" |
|
if orig_diff_b_key in original_state_dict: |
|
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key) |
|
|
|
|
|
orig_lora_down_key = "time_projection.1.lora_down.weight" |
|
orig_lora_up_key = "time_projection.1.lora_up.weight" |
|
target_base_key_peft = "condition_embedder.time_proj" |
|
target_base_key_manual = "transformer.condition_embedder.time_proj" |
|
if orig_lora_down_key in original_state_dict and orig_lora_up_key in original_state_dict: |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_A.weight"] = original_state_dict.pop(orig_lora_down_key) |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key) |
|
orig_diff_b_key = "time_projection.1.diff_b" |
|
if orig_diff_b_key in original_state_dict: |
|
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key) |
|
|
|
|
|
orig_lora_down_key = "head.head.lora_down.weight" |
|
orig_lora_up_key = "head.head.lora_up.weight" |
|
target_base_key_peft = "proj_out" |
|
target_base_key_manual = "transformer.proj_out" |
|
if orig_lora_down_key in original_state_dict and orig_lora_up_key in original_state_dict: |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_A.weight"] = original_state_dict.pop(orig_lora_down_key) |
|
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key) |
|
orig_diff_b_key = "head.head.diff_b" |
|
if orig_diff_b_key in original_state_dict: |
|
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key) |
|
|
|
|
|
if len(original_state_dict) > 0: |
|
logger.warning( |
|
f"Following keys from LoRA (after stripping 'diffusion_model.') were not converted or explicitly handled for PEFT/manual patching: {original_state_dict.keys()}" |
|
) |
|
|
|
|
|
final_peft_state_dict = {} |
|
for k_peft, v_peft in converted_state_dict_for_peft.items(): |
|
final_peft_state_dict[f"transformer.{k_peft}"] = v_peft |
|
|
|
MANUAL_PATCHES_STORE = manual_diff_patches |
|
return final_peft_state_dict |
|
|
|
|
|
def apply_manual_diff_patches(pipe_model, patches): |
|
""" |
|
Manually applies diff_b/diff patches to the model. |
|
Assumes PEFT LoRA layers have already been loaded. |
|
""" |
|
if not patches: |
|
logger.info("No manual diff patches to apply.") |
|
return |
|
|
|
logger.info(f"Applying {len(patches)} manual diff patches...") |
|
patched_keys_count = 0 |
|
unpatched_keys_count = 0 |
|
skipped_keys_details = [] |
|
|
|
for key, diff_tensor in patches.items(): |
|
try: |
|
|
|
current_module = pipe_model |
|
path_parts = key.split('.')[1:] |
|
|
|
|
|
|
|
|
|
parent_module_path = path_parts[:-1] |
|
param_name_to_patch = path_parts[-1] |
|
|
|
for part in parent_module_path: |
|
if hasattr(current_module, part): |
|
current_module = getattr(current_module, part) |
|
elif hasattr(current_module, 'base_layer') and hasattr(current_module.base_layer, part): |
|
|
|
|
|
|
|
current_module = getattr(current_module.base_layer, part) |
|
else: |
|
raise AttributeError(f"Submodule '{part}' not found in path '{'.'.join(parent_module_path)}' within {key}") |
|
|
|
|
|
|
|
|
|
|
|
layer_to_modify = current_module |
|
|
|
if hasattr(layer_to_modify, "base_layer") and isinstance(layer_to_modify.base_layer, (torch.nn.Linear, torch.nn.LayerNorm)): |
|
actual_param_owner = layer_to_modify.base_layer |
|
else: |
|
actual_param_owner = layer_to_modify |
|
|
|
if not hasattr(actual_param_owner, param_name_to_patch): |
|
skipped_keys_details.append(f"Key: {key}, Reason: Parameter '{param_name_to_patch}' not found in layer '{actual_param_owner}'. Layer type: {type(actual_param_owner)}") |
|
unpatched_keys_count += 1 |
|
continue |
|
|
|
original_param = getattr(actual_param_owner, param_name_to_patch) |
|
|
|
if original_param is None and param_name_to_patch == "bias": |
|
logger.info(f"Key '{key}': Original bias is None. Attempting to initialize.") |
|
if isinstance(actual_param_owner, torch.nn.Linear) or isinstance(actual_param_owner, torch.nn.LayerNorm): |
|
|
|
|
|
|
|
actual_param_owner.bias = torch.nn.Parameter(torch.zeros_like(diff_tensor, device=diff_tensor.device, dtype=diff_tensor.dtype)) |
|
original_param = actual_param_owner.bias |
|
logger.info(f"Key '{key}': Initialized bias for {type(actual_param_owner)}.") |
|
else: |
|
skipped_keys_details.append(f"Key: {key}, Reason: Original bias is None and layer '{actual_param_owner}' is not Linear or LayerNorm. Cannot initialize.") |
|
unpatched_keys_count +=1 |
|
continue |
|
|
|
|
|
if isinstance(actual_param_owner, torch.nn.RMSNorm) and param_name_to_patch == "bias": |
|
skipped_keys_details.append(f"Key: {key}, Reason: Layer '{actual_param_owner}' is RMSNorm which has no bias parameter. Skipping bias diff.") |
|
unpatched_keys_count +=1 |
|
continue |
|
|
|
|
|
if original_param is not None: |
|
if original_param.shape != diff_tensor.shape: |
|
skipped_keys_details.append(f"Key: {key}, Reason: Shape mismatch. Model param: {original_param.shape}, LoRA diff: {diff_tensor.shape}. Layer: {actual_param_owner}") |
|
unpatched_keys_count += 1 |
|
continue |
|
with torch.no_grad(): |
|
original_param.add_(diff_tensor.to(original_param.device, original_param.dtype)) |
|
|
|
patched_keys_count += 1 |
|
else: |
|
skipped_keys_details.append(f"Key: {key}, Reason: Original parameter '{param_name_to_patch}' is None and was not initialized. Layer: {actual_param_owner}") |
|
unpatched_keys_count += 1 |
|
|
|
except AttributeError as e: |
|
skipped_keys_details.append(f"Key: {key}, Reason: AttributeError - {e}") |
|
unpatched_keys_count += 1 |
|
except Exception as e: |
|
skipped_keys_details.append(f"Key: {key}, Reason: General Exception - {e}") |
|
unpatched_keys_count += 1 |
|
|
|
logger.info(f"Manual patching summary: {patched_keys_count} keys patched, {unpatched_keys_count} keys failed or skipped.") |
|
if unpatched_keys_count > 0: |
|
logger.warning("Details of unpatched/skipped keys:") |
|
for detail in skipped_keys_details: |
|
logger.warning(f" - {detail}") |
|
|
|
|
|
logger.info(f"Loading VAE for {MODEL_ID}...") |
|
vae = AutoencoderKLWan.from_pretrained( |
|
MODEL_ID, |
|
subfolder="vae", |
|
torch_dtype=torch.float32 |
|
) |
|
logger.info(f"Loading Pipeline {MODEL_ID}...") |
|
pipe = WanPipeline.from_pretrained( |
|
MODEL_ID, |
|
vae=vae, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
logger.info("Moving pipeline to CUDA...") |
|
pipe.to("cuda") |
|
|
|
|
|
logger.info(f"Downloading LoRA {LORA_FILENAME} from {LORA_REPO_ID}...") |
|
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) |
|
|
|
logger.info("Loading LoRA weights with custom converter...") |
|
|
|
|
|
|
|
|
|
from safetensors.torch import load_file as load_safetensors |
|
raw_lora_state_dict = load_safetensors(causvid_path) |
|
|
|
|
|
peft_state_dict = _custom_convert_non_diffusers_wan_lora_to_diffusers(raw_lora_state_dict) |
|
|
|
|
|
if peft_state_dict: |
|
pipe.load_lora_weights( |
|
peft_state_dict, |
|
adapter_name="causvid_lora" |
|
) |
|
logger.info("PEFT LoRA A/B weights loaded.") |
|
else: |
|
logger.warning("No PEFT-compatible LoRA weights found after conversion.") |
|
|
|
|
|
apply_manual_diff_patches(pipe.transformer, MANUAL_PATCHES_STORE) |
|
logger.info("Manual diff_b/diff patches applied.") |
|
|
|
|
|
|
|
@spaces.GPU |
|
def generate_video(prompt, negative_prompt, height, width, num_frames, guidance_scale, steps, fps): |
|
logger.info("Starting video generation...") |
|
logger.info(f" Prompt: {prompt}") |
|
logger.info(f" Negative Prompt: {negative_prompt if negative_prompt else 'None'}") |
|
logger.info(f" Height: {height}, Width: {width}") |
|
logger.info(f" Num Frames: {num_frames}, FPS: {fps}") |
|
logger.info(f" Guidance Scale: {guidance_scale}") |
|
|
|
height = (int(height) // 8) * 8 |
|
width = (int(width) // 8) * 8 |
|
num_frames = int(num_frames) |
|
fps = int(fps) |
|
|
|
with torch.inference_mode(): |
|
output_frames_list = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
height=height, |
|
width=width, |
|
num_frames=num_frames, |
|
guidance_scale=float(guidance_scale), |
|
num_inference_steps=steps |
|
).frames[0] |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: |
|
video_path = tmpfile.name |
|
|
|
export_to_video(output_frames_list, video_path, fps=fps) |
|
logger.info(f"Video successfully generated and saved to {video_path}") |
|
return video_path |
|
|
|
|
|
default_prompt = "A cat walks on the grass, realistic" |
|
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards" |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(f""" |
|
# Text-to-Video with Wan 2.1 (14B) + CausVid LoRA |
|
Powered by `diffusers` and `Wan-AI/{MODEL_ID}`. |
|
Model is loaded into memory when the app starts. This might take a few minutes. |
|
Ensure you have a GPU with sufficient VRAM (e.g., ~24GB+ for these default settings). |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
prompt_input = gr.Textbox(label="Prompt", value=default_prompt, lines=3) |
|
negative_prompt_input = gr.Textbox( |
|
label="Negative Prompt (Optional)", |
|
value=default_negative_prompt, |
|
lines=3 |
|
) |
|
with gr.Row(): |
|
height_input = gr.Slider(minimum=256, maximum=768, step=64, value=480, label="Height (multiple of 8)") |
|
width_input = gr.Slider(minimum=256, maximum=1024, step=64, value=832, label="Width (multiple of 8)") |
|
with gr.Row(): |
|
num_frames_input = gr.Slider(minimum=16, maximum=100, step=1, value=25, label="Number of Frames") |
|
fps_input = gr.Slider(minimum=5, maximum=30, step=1, value=15, label="Output FPS") |
|
steps = gr.Slider(minimum=1.0, maximum=30.0, value=4.0, label="Steps") |
|
guidance_scale_input = gr.Slider(minimum=1.0, maximum=20.0, step=0.5, value=5.0, label="Guidance Scale") |
|
|
|
generate_button = gr.Button("Generate Video", variant="primary") |
|
|
|
with gr.Column(scale=3): |
|
video_output = gr.Video(label="Generated Video") |
|
|
|
generate_button.click( |
|
fn=generate_video, |
|
inputs=[ |
|
prompt_input, |
|
negative_prompt_input, |
|
height_input, |
|
width_input, |
|
num_frames_input, |
|
guidance_scale_input, |
|
steps, |
|
fps_input |
|
], |
|
outputs=video_output |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["A panda eating bamboo in a lush forest, cinematic lighting", default_negative_prompt, 480, 832, 25, 5.0, 4, 15], |
|
["A majestic eagle soaring over snowy mountains", default_negative_prompt, 512, 768, 30, 7.0, 4, 12], |
|
["Timelapse of a flower blooming, vibrant colors", "static, ugly", 384, 640, 40, 6.0, 4, 20], |
|
["Astronaut walking on the moon, Earth in the background, highly detailed", default_negative_prompt, 480, 832, 20, 5.5, 4, 10], |
|
], |
|
inputs=[prompt_input, negative_prompt_input, height_input, width_input, num_frames_input, guidance_scale_input, steps, fps_input], |
|
outputs=video_output, |
|
fn=generate_video, |
|
cache_examples=False |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch(share=True, debug=True) |