| 
							 | 
						import cv2 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import time | 
					
					
						
						| 
							 | 
						from midas.model_loader import default_models, load_model | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import urllib.request | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						MODEL_FILE_URL = { | 
					
					
						
						| 
							 | 
						    "midas_v21_small_256" : "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt", | 
					
					
						
						| 
							 | 
						    "dpt_hybrid_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid_384.pt", | 
					
					
						
						| 
							 | 
						    "dpt_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large_384.pt", | 
					
					
						
						| 
							 | 
						    "dpt_swin2_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt", | 
					
					
						
						| 
							 | 
						    "dpt_beit_large_512" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt",   | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class MonocularDepthEstimator: | 
					
					
						
						| 
							 | 
						    def __init__(self, | 
					
					
						
						| 
							 | 
						        model_type="midas_v21_small_256", | 
					
					
						
						| 
							 | 
						        model_weights_path="models/",  | 
					
					
						
						| 
							 | 
						        optimize=False,  | 
					
					
						
						| 
							 | 
						        side_by_side=False,  | 
					
					
						
						| 
							 | 
						        height=None,  | 
					
					
						
						| 
							 | 
						        square=False,  | 
					
					
						
						| 
							 | 
						        grayscale=False): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        print("Initializing parameters and model...") | 
					
					
						
						| 
							 | 
						        self.is_optimize = optimize | 
					
					
						
						| 
							 | 
						        self.is_square = square | 
					
					
						
						| 
							 | 
						        self.is_grayscale = grayscale | 
					
					
						
						| 
							 | 
						        self.height = height | 
					
					
						
						| 
							 | 
						        self.side_by_side = side_by_side | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 
					
					
						
						| 
							 | 
						        print("Running inference on : %s" % self.device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if not os.path.exists(model_weights_path+model_type+".pt"): | 
					
					
						
						| 
							 | 
						            print("Model file not found. Downloading...") | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt") | 
					
					
						
						| 
							 | 
						            print("Model file downloaded successfully.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.model, self.transform, self.net_w, self.net_h = load_model(self.device, model_weights_path+model_type+".pt",  | 
					
					
						
						| 
							 | 
						                                                                        model_type, optimize, height, square)     | 
					
					
						
						| 
							 | 
						        print("Net width and height: ", (self.net_w, self.net_h)) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def predict(self, image, model, target_size): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        img_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.is_optimize and self.device == torch.device("cuda"): | 
					
					
						
						| 
							 | 
						            img_tensor = img_tensor.to(memory_format=torch.channels_last) | 
					
					
						
						| 
							 | 
						            img_tensor = img_tensor.half() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        prediction = model.forward(img_tensor) | 
					
					
						
						| 
							 | 
						        prediction = ( | 
					
					
						
						| 
							 | 
						            torch.nn.functional.interpolate( | 
					
					
						
						| 
							 | 
						                prediction.unsqueeze(1), | 
					
					
						
						| 
							 | 
						                size=target_size[::-1], | 
					
					
						
						| 
							 | 
						                mode="bicubic", | 
					
					
						
						| 
							 | 
						                align_corners=False, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            .squeeze() | 
					
					
						
						| 
							 | 
						            .cpu() | 
					
					
						
						| 
							 | 
						            .numpy() | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return prediction | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def process_prediction(self, depth_map): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Take an RGB image and depth map and place them side by side. This includes a proper normalization of the depth map | 
					
					
						
						| 
							 | 
						        for better visibility. | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            original_img: the RGB image | 
					
					
						
						| 
							 | 
						            depth_img: the depth map | 
					
					
						
						| 
							 | 
						            is_grayscale: use a grayscale colormap? | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            the image and depth map place side by side | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        depth_min = depth_map.min() | 
					
					
						
						| 
							 | 
						        depth_max = depth_map.max() | 
					
					
						
						| 
							 | 
						        normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2) | 
					
					
						
						| 
							 | 
						        depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO)   | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						        return normalized_depth/255, depth_colormap/255 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def make_prediction(self, image): | 
					
					
						
						| 
							 | 
						        image = image.copy() | 
					
					
						
						| 
							 | 
						        with torch.no_grad(): | 
					
					
						
						| 
							 | 
						            original_image_rgb = np.flip(image, 2)   | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            image_tranformed = self.transform({"image": original_image_rgb/255})["image"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            pred = self.predict(image_tranformed, self.model, target_size=original_image_rgb.shape[1::-1])  | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            depthmap, depth_colormap = self.process_prediction(pred) | 
					
					
						
						| 
							 | 
						        return depthmap, depth_colormap | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def run(self, input_path): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        cap = cv2.VideoCapture(input_path) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if not cap.isOpened(): | 
					
					
						
						| 
							 | 
						            print("Error opening video file") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        with torch.no_grad(): | 
					
					
						
						| 
							 | 
						             while cap.isOpened(): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                inference_start_time = time.time() | 
					
					
						
						| 
							 | 
						                ret, frame = cap.read()                 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if ret == True: | 
					
					
						
						| 
							 | 
						                    _, depth_colormap = self.make_prediction(frame)                     | 
					
					
						
						| 
							 | 
						                    inference_end_time = time.time() | 
					
					
						
						| 
							 | 
						                    fps = round(1/(inference_end_time - inference_start_time)) | 
					
					
						
						| 
							 | 
						                    cv2.putText(depth_colormap, f'FPS: {fps}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (10, 255, 100), 2) | 
					
					
						
						| 
							 | 
						                    cv2.imshow('MiDaS Depth Estimation - Press Escape to close window ', depth_colormap) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    if cv2.waitKey(1) == 27:   | 
					
					
						
						| 
							 | 
						                        break | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    break | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        cap.release() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        cv2.destroyAllWindows() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    INPUT_PATH = "assets/videos/testvideo2.mp4" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    os.environ['CUDA_VISIBLE_DEVICES'] = '0' | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						      | 
					
					
						
						| 
							 | 
						    torch.backends.cudnn.enabled = True | 
					
					
						
						| 
							 | 
						    torch.backends.cudnn.benchmark = True | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    depth_estimator = MonocularDepthEstimator(model_type="dpt_hybrid_384") | 
					
					
						
						| 
							 | 
						    depth_estimator.run(INPUT_PATH) | 
					
					
						
						| 
							 | 
						  |