Commit
·
00ab2e7
1
Parent(s):
f5bc491
updated code files
Browse files- app.py +29 -21
- point_cloud_generator.py +77 -33
- utils.py +3 -2
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import numpy as np
|
|
| 5 |
import os
|
| 6 |
import torch
|
| 7 |
import utils
|
|
|
|
| 8 |
|
| 9 |
from image_segmenter import ImageSegmenter
|
| 10 |
from monocular_depth_estimator import MonocularDepthEstimator
|
|
@@ -21,7 +22,9 @@ def process_image(image):
|
|
| 21 |
image_segmentation, objects_data = img_seg.predict(image)
|
| 22 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
| 23 |
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def test_process_img(image):
|
| 27 |
image = utils.resize(image)
|
|
@@ -32,14 +35,14 @@ def test_process_img(image):
|
|
| 32 |
def process_video(vid_path=None):
|
| 33 |
vid_cap = cv2.VideoCapture(vid_path)
|
| 34 |
while vid_cap.isOpened():
|
| 35 |
-
ret, frame = vid_cap.read()
|
| 36 |
if ret:
|
| 37 |
print("making predictions ....")
|
| 38 |
frame = utils.resize(frame)
|
| 39 |
image_segmentation, objects_data = img_seg.predict(frame)
|
| 40 |
depthmap, depth_colormap = depth_estimator.make_prediction(frame)
|
| 41 |
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
|
| 42 |
-
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, dist_image
|
| 43 |
|
| 44 |
return None
|
| 45 |
|
|
@@ -76,9 +79,9 @@ if __name__ == "__main__":
|
|
| 76 |
|
| 77 |
# image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
|
| 78 |
# final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
|
| 79 |
-
# objs_pcd = utils.generate_obj_pcd(depthmap, objects_data
|
| 80 |
# # print(objs_pcd[0][0])
|
| 81 |
-
#
|
| 82 |
|
| 83 |
# cv2.imshow("Segmentation", image_segmentation)
|
| 84 |
# cv2.imshow("Depth", depthmap*objects_data[2][3])
|
|
@@ -91,11 +94,9 @@ if __name__ == "__main__":
|
|
| 91 |
with gr.Blocks() as my_app:
|
| 92 |
|
| 93 |
# title
|
| 94 |
-
gr.Markdown(
|
| 95 |
-
""
|
| 96 |
-
|
| 97 |
-
Input an image or Video
|
| 98 |
-
""")
|
| 99 |
|
| 100 |
# tabs
|
| 101 |
with gr.Tab("Image"):
|
|
@@ -119,13 +120,17 @@ if __name__ == "__main__":
|
|
| 119 |
|
| 120 |
with gr.Row():
|
| 121 |
dist_img_output = gr.Image(height=300, label="Distance")
|
| 122 |
-
pcd_img_output = gr.
|
| 123 |
|
| 124 |
gr.Markdown("## Sample Images")
|
| 125 |
gr.Examples(
|
| 126 |
-
examples=[os.path.join(os.path.dirname(__file__), "assets/images/
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
inputs=img_input,
|
| 128 |
-
outputs=[segmentation_img_output, depth_img_output],
|
| 129 |
fn=process_image,
|
| 130 |
cache_examples=True,
|
| 131 |
)
|
|
@@ -139,7 +144,7 @@ if __name__ == "__main__":
|
|
| 139 |
"Medium - Balanced performance and accuracy",
|
| 140 |
"Large - Slow performance and high accuracy"],
|
| 141 |
label="Model Type", value="Small - Better performance and less accuracy",
|
| 142 |
-
info="Select the inference model before running predictions!")
|
| 143 |
|
| 144 |
options_checkbox_vid = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
|
| 145 |
conf_thres_vid = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
|
|
@@ -149,33 +154,36 @@ if __name__ == "__main__":
|
|
| 149 |
|
| 150 |
with gr.Column(scale=2):
|
| 151 |
with gr.Row():
|
| 152 |
-
segmentation_vid_output = gr.Image(height=
|
| 153 |
-
depth_vid_output = gr.Image(height=
|
| 154 |
|
| 155 |
with gr.Row():
|
| 156 |
dist_vid_output = gr.Image(height=300, label="Distance")
|
| 157 |
-
pcd_vid_output = gr.Image(height=300, label="Point Cloud")
|
| 158 |
|
| 159 |
gr.Markdown("## Sample Videos")
|
| 160 |
gr.Examples(
|
| 161 |
-
examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4")
|
|
|
|
|
|
|
|
|
|
| 162 |
inputs=vid_input,
|
| 163 |
# outputs=vid_output,
|
| 164 |
# fn=vid_segmenation,
|
| 165 |
)
|
|
|
|
| 166 |
|
| 167 |
# image tab logic
|
| 168 |
-
submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output])
|
| 169 |
options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
|
| 170 |
conf_thres_img.change(update_confidence_threshold, conf_thres_img, [])
|
| 171 |
model_type_img.change(model_selector, model_type_img, [])
|
| 172 |
|
| 173 |
# video tab logic
|
| 174 |
submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
|
|
|
|
| 175 |
cancel_btn.click(cancel, inputs=[], outputs=[])
|
| 176 |
options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
|
| 177 |
-
conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
|
| 178 |
-
|
| 179 |
|
| 180 |
|
| 181 |
my_app.queue(concurrency_count=5, max_size=20).launch()
|
|
|
|
| 5 |
import os
|
| 6 |
import torch
|
| 7 |
import utils
|
| 8 |
+
import plotly.graph_objects as go
|
| 9 |
|
| 10 |
from image_segmenter import ImageSegmenter
|
| 11 |
from monocular_depth_estimator import MonocularDepthEstimator
|
|
|
|
| 22 |
image_segmentation, objects_data = img_seg.predict(image)
|
| 23 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
| 24 |
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
|
| 25 |
+
objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
|
| 26 |
+
plot_fig = display_pcd(objs_pcd)
|
| 27 |
+
return image_segmentation, depth_colormap, dist_image, plot_fig
|
| 28 |
|
| 29 |
def test_process_img(image):
|
| 30 |
image = utils.resize(image)
|
|
|
|
| 35 |
def process_video(vid_path=None):
|
| 36 |
vid_cap = cv2.VideoCapture(vid_path)
|
| 37 |
while vid_cap.isOpened():
|
| 38 |
+
ret, frame = vid_cap.read()
|
| 39 |
if ret:
|
| 40 |
print("making predictions ....")
|
| 41 |
frame = utils.resize(frame)
|
| 42 |
image_segmentation, objects_data = img_seg.predict(frame)
|
| 43 |
depthmap, depth_colormap = depth_estimator.make_prediction(frame)
|
| 44 |
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
|
| 45 |
+
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
|
| 46 |
|
| 47 |
return None
|
| 48 |
|
|
|
|
| 79 |
|
| 80 |
# image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
|
| 81 |
# final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
|
| 82 |
+
# objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
|
| 83 |
# # print(objs_pcd[0][0])
|
| 84 |
+
# display_pcd(objs_pcd, use_matplotlib=True)
|
| 85 |
|
| 86 |
# cv2.imshow("Segmentation", image_segmentation)
|
| 87 |
# cv2.imshow("Depth", depthmap*objects_data[2][3])
|
|
|
|
| 94 |
with gr.Blocks() as my_app:
|
| 95 |
|
| 96 |
# title
|
| 97 |
+
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
|
| 98 |
+
gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
|
| 99 |
+
gr.Markdown("<h3><center>This model estimates the depth of segmented objects.</center></h3>")
|
|
|
|
|
|
|
| 100 |
|
| 101 |
# tabs
|
| 102 |
with gr.Tab("Image"):
|
|
|
|
| 120 |
|
| 121 |
with gr.Row():
|
| 122 |
dist_img_output = gr.Image(height=300, label="Distance")
|
| 123 |
+
pcd_img_output = gr.Plot(label="Point Cloud")
|
| 124 |
|
| 125 |
gr.Markdown("## Sample Images")
|
| 126 |
gr.Examples(
|
| 127 |
+
examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
|
| 128 |
+
os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
|
| 129 |
+
os.path.join(os.path.dirname(__file__), "assets/images/soccer.jpg"),
|
| 130 |
+
os.path.join(os.path.dirname(__file__), "assets/images/room_2.png"),
|
| 131 |
+
os.path.join(os.path.dirname(__file__), "assets/images/living_room.jpg")],
|
| 132 |
inputs=img_input,
|
| 133 |
+
outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output],
|
| 134 |
fn=process_image,
|
| 135 |
cache_examples=True,
|
| 136 |
)
|
|
|
|
| 144 |
"Medium - Balanced performance and accuracy",
|
| 145 |
"Large - Slow performance and high accuracy"],
|
| 146 |
label="Model Type", value="Small - Better performance and less accuracy",
|
| 147 |
+
info="Select the inference model before running predictions!")
|
| 148 |
|
| 149 |
options_checkbox_vid = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
|
| 150 |
conf_thres_vid = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
|
|
|
|
| 154 |
|
| 155 |
with gr.Column(scale=2):
|
| 156 |
with gr.Row():
|
| 157 |
+
segmentation_vid_output = gr.Image(height=300, label="Segmentation")
|
| 158 |
+
depth_vid_output = gr.Image(height=300, label="Depth Estimation")
|
| 159 |
|
| 160 |
with gr.Row():
|
| 161 |
dist_vid_output = gr.Image(height=300, label="Distance")
|
|
|
|
| 162 |
|
| 163 |
gr.Markdown("## Sample Videos")
|
| 164 |
gr.Examples(
|
| 165 |
+
examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
|
| 166 |
+
os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
|
| 167 |
+
os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
|
| 168 |
+
os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
|
| 169 |
inputs=vid_input,
|
| 170 |
# outputs=vid_output,
|
| 171 |
# fn=vid_segmenation,
|
| 172 |
)
|
| 173 |
+
|
| 174 |
|
| 175 |
# image tab logic
|
| 176 |
+
submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
|
| 177 |
options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
|
| 178 |
conf_thres_img.change(update_confidence_threshold, conf_thres_img, [])
|
| 179 |
model_type_img.change(model_selector, model_type_img, [])
|
| 180 |
|
| 181 |
# video tab logic
|
| 182 |
submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
|
| 183 |
+
model_type_vid.change(model_selector, model_type_vid, [])
|
| 184 |
cancel_btn.click(cancel, inputs=[], outputs=[])
|
| 185 |
options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
|
| 186 |
+
conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
|
|
|
|
| 187 |
|
| 188 |
|
| 189 |
my_app.queue(concurrency_count=5, max_size=20).launch()
|
point_cloud_generator.py
CHANGED
|
@@ -2,7 +2,7 @@ import cv2
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import open3d as o3d
|
| 5 |
-
|
| 6 |
|
| 7 |
|
| 8 |
|
|
@@ -70,6 +70,7 @@ class PointCloudGenerator:
|
|
| 70 |
|
| 71 |
def generate_point_cloud(self, depth_img, normalize=False):
|
| 72 |
|
|
|
|
| 73 |
|
| 74 |
if normalize:
|
| 75 |
# normalizing depth image
|
|
@@ -81,49 +82,92 @@ class PointCloudGenerator:
|
|
| 81 |
# convert depth to point cloud
|
| 82 |
# point_cloud = self.conver_to_point_cloud(depth_img)
|
| 83 |
|
| 84 |
-
depth_image = o3d.geometry.Image(depth_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
#
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
#
|
| 90 |
-
camera_intrinsic.set_intrinsics(depth_image.width, depth_image.height, self.fx_depth, self.fy_depth, self.cx_depth, self.cy_depth)
|
| 91 |
|
| 92 |
|
| 93 |
# Create open3d point cloud from depth image
|
| 94 |
-
point_cloud = o3d.geometry.PointCloud.create_from_depth_image(
|
|
|
|
| 95 |
|
| 96 |
return point_cloud
|
| 97 |
|
| 98 |
-
def display_pcd(pcd_data, use_matplotlib=True):
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
if __name__ == "__main__":
|
| 129 |
depth_img_path = "assets/images/depth_map_p1.png"
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import open3d as o3d
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
|
| 7 |
|
| 8 |
|
|
|
|
| 70 |
|
| 71 |
def generate_point_cloud(self, depth_img, normalize=False):
|
| 72 |
|
| 73 |
+
depth_img = np.array(depth_img)
|
| 74 |
|
| 75 |
if normalize:
|
| 76 |
# normalizing depth image
|
|
|
|
| 82 |
# convert depth to point cloud
|
| 83 |
# point_cloud = self.conver_to_point_cloud(depth_img)
|
| 84 |
|
| 85 |
+
# depth_image = o3d.geometry.Image(depth_img)
|
| 86 |
+
depth_image = o3d.geometry.Image(np.ascontiguousarray(depth_img))
|
| 87 |
+
|
| 88 |
+
# # Create open3d camera intrinsic object
|
| 89 |
+
# intrinsic_matrix = np.array([[self.fx_depth, 0, self.cx_depth], [0, self.fy_depth, self.cy_depth], [0, 0, 1]])
|
| 90 |
+
# camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
| 91 |
+
# # camera_intrinsic.intrinsic_matrix = intrinsic_matrix
|
| 92 |
+
# camera_intrinsic.set_intrinsics(640, 480, self.fx_depth, self.fy_depth, self.cx_depth, self.cy_depth)
|
| 93 |
|
| 94 |
+
# camera settings
|
| 95 |
+
# camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(
|
| 96 |
+
# depth_img.shape[0], depth_img.shape[1], 500, 500, depth_img.shape[0] / 2, depth_img.shape[1] / 2
|
| 97 |
+
# )
|
|
|
|
| 98 |
|
| 99 |
|
| 100 |
# Create open3d point cloud from depth image
|
| 101 |
+
point_cloud = o3d.geometry.PointCloud.create_from_depth_image(depth_image,
|
| 102 |
+
o3d.camera.PinholeCameraIntrinsic( o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
|
| 103 |
|
| 104 |
return point_cloud
|
| 105 |
|
| 106 |
+
# def display_pcd(pcd_data, use_matplotlib=True):
|
| 107 |
|
| 108 |
+
# if use_matplotlib:
|
| 109 |
+
# fig = plt.figure()
|
| 110 |
+
# ax = fig.add_subplot(111, projection='3d')
|
| 111 |
|
| 112 |
+
# for data, clr in pcd_data:
|
| 113 |
+
# # points = np.array(data)
|
| 114 |
+
# points = np.asarray(data.points)
|
| 115 |
+
# skip = 5
|
| 116 |
+
# point_range = range(0, points.shape[0], skip) # skip points to prevent crash
|
| 117 |
|
| 118 |
+
# if use_matplotlib:
|
| 119 |
+
# ax.scatter(points[point_range, 0], points[point_range, 1], points[point_range, 2]*100, c=list(clr).append(1), marker='o')
|
| 120 |
|
| 121 |
+
# # if not use_matplotlib:
|
| 122 |
+
# # pcd_o3d = o3d.geometry.PointCloud() # create point cloud object
|
| 123 |
+
# # pcd_o3d.points = o3d.utility.Vector3dVector(points) # set pcd_np as the point cloud points
|
| 124 |
+
# # # Visualize:
|
| 125 |
+
# # o3d.visualization.draw_geometries([pcd_o3d])
|
| 126 |
+
|
| 127 |
+
# if use_matplotlib:
|
| 128 |
+
# ax.set_xlabel('X Label')
|
| 129 |
+
# ax.set_ylabel('Y Label')
|
| 130 |
+
# ax.set_zlabel('Z Label')
|
| 131 |
+
# ax.view_init(elev=-90, azim=0, roll=-90)
|
| 132 |
+
# # plt.show()
|
| 133 |
+
# return fig
|
| 134 |
+
|
| 135 |
+
# if not use_matplotlib:
|
| 136 |
+
# o3d.visualization.draw_geometries([pcd_o3d])
|
| 137 |
+
|
| 138 |
+
def display_pcd(pcd_data):
|
| 139 |
+
fig = go.Figure()
|
| 140 |
+
|
| 141 |
+
for data, clr in pcd_data:
|
| 142 |
+
points = np.asarray(data.points)
|
| 143 |
+
skip = 1
|
| 144 |
+
point_range = range(0, points.shape[0], skip)
|
| 145 |
+
|
| 146 |
+
fig.add_trace(go.Scatter3d(
|
| 147 |
+
x=points[point_range, 0],
|
| 148 |
+
y=points[point_range, 1],
|
| 149 |
+
z=points[point_range, 2]*100,
|
| 150 |
+
mode='markers',
|
| 151 |
+
marker=dict(
|
| 152 |
+
size=1,
|
| 153 |
+
color='rgb'+str(clr),
|
| 154 |
+
opacity=1
|
| 155 |
+
)
|
| 156 |
+
))
|
| 157 |
+
|
| 158 |
+
fig.update_layout(
|
| 159 |
+
scene=dict(
|
| 160 |
+
xaxis_title='X Label',
|
| 161 |
+
yaxis_title='Y Label',
|
| 162 |
+
zaxis_title='Z Label',
|
| 163 |
+
camera=dict(
|
| 164 |
+
eye=dict(x=0, y=0, z=-1),
|
| 165 |
+
# up=dict(x=0, y=0, z=1),
|
| 166 |
+
)
|
| 167 |
+
)
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
return fig
|
| 171 |
|
| 172 |
if __name__ == "__main__":
|
| 173 |
depth_img_path = "assets/images/depth_map_p1.png"
|
utils.py
CHANGED
|
@@ -27,7 +27,8 @@ def draw_depth_info(image, depth_map, objects_data):
|
|
| 27 |
center = data[2]
|
| 28 |
mask = data[3]
|
| 29 |
_, depth = get_masked_depth(depth_map, mask)
|
| 30 |
-
cv2.
|
|
|
|
| 31 |
|
| 32 |
return image
|
| 33 |
|
|
@@ -35,7 +36,7 @@ def generate_obj_pcd(depth_map, objects_data):
|
|
| 35 |
objs_pcd = []
|
| 36 |
pcd_generator = PointCloudGenerator()
|
| 37 |
|
| 38 |
-
for data in objects_data
|
| 39 |
mask = data[3]
|
| 40 |
cls_clr = data[4]
|
| 41 |
masked_depth = depth_map*mask
|
|
|
|
| 27 |
center = data[2]
|
| 28 |
mask = data[3]
|
| 29 |
_, depth = get_masked_depth(depth_map, mask)
|
| 30 |
+
cv2.rectangle(image, (center[0]-15, center[1]-15), (center[0]+(len(str(round(depth*10, 2))+'m')*12), center[1]+15), data[4], -1)
|
| 31 |
+
cv2.putText(image, str(round(depth*10, 2))+'m', (center[0]-5, center[1]+5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
| 32 |
|
| 33 |
return image
|
| 34 |
|
|
|
|
| 36 |
objs_pcd = []
|
| 37 |
pcd_generator = PointCloudGenerator()
|
| 38 |
|
| 39 |
+
for data in objects_data:
|
| 40 |
mask = data[3]
|
| 41 |
cls_clr = data[4]
|
| 42 |
masked_depth = depth_map*mask
|