Alessio Grancini
commited on
Update monocular_depth_estimator.py
Browse files- monocular_depth_estimator.py +122 -60
monocular_depth_estimator.py
CHANGED
|
@@ -5,7 +5,6 @@ import time
|
|
| 5 |
from midas.model_loader import default_models, load_model
|
| 6 |
import os
|
| 7 |
import urllib.request
|
| 8 |
-
import spaces
|
| 9 |
|
| 10 |
MODEL_FILE_URL = {
|
| 11 |
"midas_v21_small_256" : "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt",
|
|
@@ -16,101 +15,164 @@ MODEL_FILE_URL = {
|
|
| 16 |
}
|
| 17 |
|
| 18 |
class MonocularDepthEstimator:
|
| 19 |
-
def __init__(self,
|
| 20 |
-
|
| 21 |
-
|
| 22 |
optimize=False,
|
| 23 |
side_by_side=False,
|
| 24 |
height=None,
|
| 25 |
square=False,
|
| 26 |
grayscale=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
self.model_weights_path = model_weights_path
|
| 31 |
self.is_optimize = optimize
|
| 32 |
self.is_square = square
|
| 33 |
self.is_grayscale = grayscale
|
| 34 |
self.height = height
|
| 35 |
self.side_by_side = side_by_side
|
| 36 |
-
self.model = None
|
| 37 |
-
self.transform = None
|
| 38 |
-
self.net_w = None
|
| 39 |
-
self.net_h = None
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
if not os.path.exists(model_weights_path+model_type+".pt"):
|
| 43 |
print("Model file not found. Downloading...")
|
|
|
|
| 44 |
urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt")
|
| 45 |
print("Model file downloaded successfully.")
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
self.model_type,
|
| 55 |
-
self.is_optimize,
|
| 56 |
-
self.height,
|
| 57 |
-
self.is_square
|
| 58 |
-
)
|
| 59 |
-
print("Model loaded successfully")
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
self.load_model_if_needed()
|
| 64 |
-
img_tensor = torch.from_numpy(image).to('cuda').unsqueeze(0)
|
| 65 |
|
| 66 |
-
if self.is_optimize:
|
| 67 |
img_tensor = img_tensor.to(memory_format=torch.channels_last)
|
| 68 |
img_tensor = img_tensor.half()
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
align_corners=False,
|
| 78 |
-
)
|
| 79 |
-
.squeeze()
|
| 80 |
-
.cpu()
|
| 81 |
-
.numpy()
|
| 82 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
return prediction
|
| 85 |
|
| 86 |
def process_prediction(self, depth_map):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
depth_min = depth_map.min()
|
| 88 |
depth_max = depth_map.max()
|
| 89 |
normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min)
|
|
|
|
|
|
|
|
|
|
| 90 |
grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2)
|
| 91 |
depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO)
|
|
|
|
| 92 |
return normalized_depth/255, depth_colormap/255
|
| 93 |
|
| 94 |
-
@spaces.GPU
|
| 95 |
def make_prediction(self, image):
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
self.load_model_if_needed()
|
| 101 |
image_tranformed = self.transform({"image": original_image_rgb/255})["image"]
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
depthmap, depth_colormap = self.process_prediction(pred)
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
|
|
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from midas.model_loader import default_models, load_model
|
| 6 |
import os
|
| 7 |
import urllib.request
|
|
|
|
| 8 |
|
| 9 |
MODEL_FILE_URL = {
|
| 10 |
"midas_v21_small_256" : "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt",
|
|
|
|
| 15 |
}
|
| 16 |
|
| 17 |
class MonocularDepthEstimator:
|
| 18 |
+
def __init__(self,
|
| 19 |
+
model_type="midas_v21_small_256",
|
| 20 |
+
model_weights_path="models/",
|
| 21 |
optimize=False,
|
| 22 |
side_by_side=False,
|
| 23 |
height=None,
|
| 24 |
square=False,
|
| 25 |
grayscale=False):
|
| 26 |
+
|
| 27 |
+
# model type
|
| 28 |
+
# MiDaS 3.1:
|
| 29 |
+
# For highest quality: dpt_beit_large_512
|
| 30 |
+
# For moderately less quality, but better speed-performance trade-off: dpt_swin2_large_384
|
| 31 |
+
# For embedded devices: dpt_swin2_tiny_256, dpt_levit_224
|
| 32 |
+
# For inference on Intel CPUs, OpenVINO may be used for the small legacy model: openvino_midas_v21_small .xml, .bin
|
| 33 |
+
|
| 34 |
+
# MiDaS 3.0:
|
| 35 |
+
# Legacy transformer models dpt_large_384 and dpt_hybrid_384
|
| 36 |
+
|
| 37 |
+
# MiDaS 2.1:
|
| 38 |
+
# Legacy convolutional models midas_v21_384 and midas_v21_small_256
|
| 39 |
|
| 40 |
+
# params
|
| 41 |
+
print("Initializing parameters and model...")
|
|
|
|
| 42 |
self.is_optimize = optimize
|
| 43 |
self.is_square = square
|
| 44 |
self.is_grayscale = grayscale
|
| 45 |
self.height = height
|
| 46 |
self.side_by_side = side_by_side
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# select device
|
| 49 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 50 |
+
print("Running inference on : %s" % self.device)
|
| 51 |
+
|
| 52 |
+
# loading model
|
| 53 |
if not os.path.exists(model_weights_path+model_type+".pt"):
|
| 54 |
print("Model file not found. Downloading...")
|
| 55 |
+
# Download the model file
|
| 56 |
urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt")
|
| 57 |
print("Model file downloaded successfully.")
|
| 58 |
|
| 59 |
+
self.model, self.transform, self.net_w, self.net_h = load_model(self.device, model_weights_path+model_type+".pt",
|
| 60 |
+
model_type, optimize, height, square)
|
| 61 |
+
print("Net width and height: ", (self.net_w, self.net_h))
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def predict(self, image, model, target_size):
|
| 65 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
# convert img to tensor and load to gpu
|
| 68 |
+
img_tensor = torch.from_numpy(image).to(self.device).unsqueeze(0)
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
if self.is_optimize and self.device == torch.device("cuda"):
|
| 71 |
img_tensor = img_tensor.to(memory_format=torch.channels_last)
|
| 72 |
img_tensor = img_tensor.half()
|
| 73 |
|
| 74 |
+
prediction = model.forward(img_tensor)
|
| 75 |
+
prediction = (
|
| 76 |
+
torch.nn.functional.interpolate(
|
| 77 |
+
prediction.unsqueeze(1),
|
| 78 |
+
size=target_size[::-1],
|
| 79 |
+
mode="bicubic",
|
| 80 |
+
align_corners=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
)
|
| 82 |
+
.squeeze()
|
| 83 |
+
.cpu()
|
| 84 |
+
.numpy()
|
| 85 |
+
)
|
| 86 |
|
| 87 |
return prediction
|
| 88 |
|
| 89 |
def process_prediction(self, depth_map):
|
| 90 |
+
"""
|
| 91 |
+
Take an RGB image and depth map and place them side by side. This includes a proper normalization of the depth map
|
| 92 |
+
for better visibility.
|
| 93 |
+
Args:
|
| 94 |
+
original_img: the RGB image
|
| 95 |
+
depth_img: the depth map
|
| 96 |
+
is_grayscale: use a grayscale colormap?
|
| 97 |
+
Returns:
|
| 98 |
+
the image and depth map place side by side
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
# normalizing depth image
|
| 102 |
depth_min = depth_map.min()
|
| 103 |
depth_max = depth_map.max()
|
| 104 |
normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min)
|
| 105 |
+
|
| 106 |
+
# normalized_depth *= 3
|
| 107 |
+
# grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2) / 3
|
| 108 |
grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2)
|
| 109 |
depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO)
|
| 110 |
+
|
| 111 |
return normalized_depth/255, depth_colormap/255
|
| 112 |
|
|
|
|
| 113 |
def make_prediction(self, image):
|
| 114 |
+
image = image.copy()
|
| 115 |
+
with torch.no_grad():
|
| 116 |
+
original_image_rgb = np.flip(image, 2) # in [0, 255] (flip required to get RGB)
|
| 117 |
+
# resizing the image to feed to the model
|
|
|
|
| 118 |
image_tranformed = self.transform({"image": original_image_rgb/255})["image"]
|
| 119 |
+
|
| 120 |
+
# monocular depth prediction
|
| 121 |
+
pred = self.predict(image_tranformed, self.model, target_size=original_image_rgb.shape[1::-1])
|
| 122 |
+
|
| 123 |
+
# process the model predictions
|
| 124 |
depthmap, depth_colormap = self.process_prediction(pred)
|
| 125 |
+
return depthmap, depth_colormap
|
| 126 |
+
|
| 127 |
+
def run(self, input_path):
|
| 128 |
+
|
| 129 |
+
# input video
|
| 130 |
+
cap = cv2.VideoCapture(input_path)
|
| 131 |
+
|
| 132 |
+
# Check if camera opened successfully
|
| 133 |
+
if not cap.isOpened():
|
| 134 |
+
print("Error opening video file")
|
| 135 |
+
|
| 136 |
+
with torch.no_grad():
|
| 137 |
+
while cap.isOpened():
|
| 138 |
+
|
| 139 |
+
# Capture frame-by-frame
|
| 140 |
+
inference_start_time = time.time()
|
| 141 |
+
ret, frame = cap.read()
|
| 142 |
+
|
| 143 |
+
if ret == True:
|
| 144 |
+
_, depth_colormap = self.make_prediction(frame)
|
| 145 |
+
inference_end_time = time.time()
|
| 146 |
+
fps = round(1/(inference_end_time - inference_start_time))
|
| 147 |
+
cv2.putText(depth_colormap, f'FPS: {fps}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (10, 255, 100), 2)
|
| 148 |
+
cv2.imshow('MiDaS Depth Estimation - Press Escape to close window ', depth_colormap)
|
| 149 |
+
|
| 150 |
+
# Press ESC on keyboard to exit
|
| 151 |
+
if cv2.waitKey(1) == 27: # Escape key
|
| 152 |
+
break
|
| 153 |
+
|
| 154 |
+
else:
|
| 155 |
+
break
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# When everything done, release
|
| 159 |
+
# the video capture object
|
| 160 |
+
cap.release()
|
| 161 |
+
|
| 162 |
+
# Closes all the frames
|
| 163 |
+
cv2.destroyAllWindows()
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
if __name__ == "__main__":
|
| 168 |
+
# params
|
| 169 |
+
INPUT_PATH = "assets/videos/testvideo2.mp4"
|
| 170 |
|
| 171 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
| 172 |
|
| 173 |
+
# set torch options
|
| 174 |
+
torch.backends.cudnn.enabled = True
|
| 175 |
+
torch.backends.cudnn.benchmark = True
|
| 176 |
+
|
| 177 |
+
depth_estimator = MonocularDepthEstimator(model_type="dpt_hybrid_384")
|
| 178 |
+
depth_estimator.run(INPUT_PATH)
|