Alessio Grancini
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -233,13 +233,13 @@ def get_detection_data(image_data):
|
|
233 |
nested_dict = image_data.get("image", {}).get("image", {})
|
234 |
full_data_url = nested_dict.get("data", "")
|
235 |
# get model size and confidence threshold
|
236 |
-
model_size = image_data.get("model_size", "Small - Better performance and less accuracy")
|
237 |
-
confidence_threshold = image_data.get("confidence_threshold", 0.6) # Default to 60%
|
238 |
else:
|
239 |
full_data_url = image_data
|
240 |
|
241 |
-
model_size = "Small - Better performance and less accuracy" # Fallback default
|
242 |
-
confidence_threshold = 0.6 # Fallback default
|
243 |
|
244 |
if not full_data_url:
|
245 |
return {"error": "No base64 data found in input."}
|
@@ -254,17 +254,6 @@ def get_detection_data(image_data):
|
|
254 |
img = np.array(img)
|
255 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
256 |
|
257 |
-
# Log received values for reference (settings applied by prior API calls)
|
258 |
-
print(f"Received settings from payload (reference) - Model Size: {model_size}, Confidence Threshold: {confidence_threshold}")
|
259 |
-
# Verify actual models and threshold used
|
260 |
-
expected_yolo = "yolov8s-seg" if model_size == "Small - Better performance and less accuracy" else \
|
261 |
-
"yolov8m-seg" if model_size == "Medium - Balanced performance and accuracy" else "yolov8l-seg"
|
262 |
-
expected_midas = "midas_v21_small_256" if model_size == "Small - Better performance and less accuracy" else \
|
263 |
-
"dpt_hybrid_384" if model_size == "Medium - Balanced performance and accuracy" else "dpt_large_384"
|
264 |
-
print(f"Expected YOLO model: {expected_yolo}, Actual YOLO model: {img_seg.model_type}")
|
265 |
-
print(f"Expected MiDaS model: {expected_midas}, Actual MiDaS model: {depth_estimator.model_type}")
|
266 |
-
print(f"Actual confidence threshold: {img_seg.confidence_threshold}")
|
267 |
-
|
268 |
#image = utils.resize(img)
|
269 |
resized_image = utils.resize(img) #depth requires resizing
|
270 |
print(f"Debug - Resized image shape: {resized_image.shape}")
|
|
|
233 |
nested_dict = image_data.get("image", {}).get("image", {})
|
234 |
full_data_url = nested_dict.get("data", "")
|
235 |
# get model size and confidence threshold
|
236 |
+
#model_size = image_data.get("model_size", "Small - Better performance and less accuracy")
|
237 |
+
#confidence_threshold = image_data.get("confidence_threshold", 0.6) # Default to 60%
|
238 |
else:
|
239 |
full_data_url = image_data
|
240 |
|
241 |
+
#model_size = "Small - Better performance and less accuracy" # Fallback default
|
242 |
+
#confidence_threshold = 0.6 # Fallback default
|
243 |
|
244 |
if not full_data_url:
|
245 |
return {"error": "No base64 data found in input."}
|
|
|
254 |
img = np.array(img)
|
255 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
#image = utils.resize(img)
|
258 |
resized_image = utils.resize(img) #depth requires resizing
|
259 |
print(f"Debug - Resized image shape: {resized_image.shape}")
|