Voila-demo / audio_transformer.py
Mark Shi
upload code
c0a944c
raw
history blame
14.3 kB
import math
from typing import Optional
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
from einops import rearrange
@dataclass
class LocalArgs:
codebook_size: int = 2048
num_codebooks: int = 4
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L105
class KVCache(nn.Module):
def __init__(
self, n_layer, batch_size, max_seq_len, n_heads, head_dim, dtype, device
):
super().__init__()
cache_shape = (n_layer, batch_size, n_heads, max_seq_len, head_dim)
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype, device=device))
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype, device=device))
def update(self, layer_idx, input_pos, k_val, v_val):
# k_val: [B, H, S, D]
k_out = self.k_cache
v_out = self.v_cache
k_out[layer_idx, :, :, input_pos:input_pos+1] = k_val
v_out[layer_idx, :, :, input_pos:input_pos+1] = v_val
return k_out[layer_idx], v_out[layer_idx]
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L756
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
freqs = 1.0 / (
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
)
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L767
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L742
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L731
class FeedForward(nn.Module):
def __init__(self, config: LocalArgs) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L615
class Attention(nn.Module):
def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True):
super().__init__()
assert config.dim % config.n_head == 0
self.layer_idx = layer_idx
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(
config.dim, total_head_dim, bias=config.attention_qkv_bias
)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.dropout = config.dropout
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
self.use_sdpa = use_sdpa
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(self, state_dict, prefix, *args):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
mask: Tensor,
input_pos: Optional[int] = None,
kv_cache: Optional[KVCache] = None,
) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if kv_cache is not None:
k, v = kv_cache.update(self.layer_idx, input_pos, k, v)
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
if self.use_sdpa:
if mask is None:
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
y = F.scaled_dot_product_attention(
q,
k,
v,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True,
# No third party attn_mask here to use flash_attention
)
else:
y = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
)
else:
y = self.eq_scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
return self.wo(y)
def eq_scaled_dot_product_attention(
self,
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
) -> torch.Tensor:
# This is a standard scaled dot product attention
# It's low efficient, but it doesn't raise cuda error
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1))
attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
# Copied from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L599
class TransformerBlock(nn.Module):
def __init__(self, config: LocalArgs, layer_idx: int, use_sdpa: bool = True) -> None:
super().__init__()
self.attention = Attention(config, layer_idx, use_sdpa=use_sdpa)
self.feed_forward = FeedForward(config)
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
def forward(
self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: int = None, kv_cache: KVCache = None
) -> Tensor:
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos, kv_cache)
out = h + self.feed_forward(self.ffn_norm(h))
return out
# Modified from https://github.com/fishaudio/fish-speech/blob/main/fish_speech/models/text2semantic/llama.py#L470
class AudioTransformer(nn.Module):
def __init__(self, config, use_sdpa: bool = False):
super().__init__()
self.config = LocalArgs()
self.config.codebook_size = config.codebook_size
self.config.num_codebooks = config.num_codebooks
if hasattr(config, "min_audio_token_id"):
self.config.min_audio_token_id = config.min_audio_token_id
self.config.max_audio_token_id = config.max_audio_token_id
self.config.n_layer = 4
self.config.dim = 1024
self.config.n_head = 32
self.config.n_local_heads = 32
self.config.intermediate_size = 2816
self.config.head_dim = self.config.dim // self.config.n_head
self.config.norm_eps = 1e-5
self.config.attention_qkv_bias = False
self.config.dropout = 0.0
self.embeddings = nn.Embedding(self.config.codebook_size, self.config.dim)
if self.config.dim != config.hidden_size:
self.input_proj = nn.Linear(config.hidden_size, self.config.dim, bias=False)
else:
self.input_proj = nn.Identity()
self.layers = nn.ModuleList(
TransformerBlock(self.config, layer_idx, use_sdpa=use_sdpa) for layer_idx in range(self.config.n_layer)
)
self.norm = RMSNorm(self.config.dim, eps=self.config.norm_eps)
self.token_head = nn.Linear(self.config.dim, self.config.codebook_size, bias=False)
self.gradient_checkpointing = False
self.register_buffer(
"freqs_cis",
precompute_freqs_cis(self.config.num_codebooks, self.config.dim // self.config.n_head, 10000),
persistent=False,
)
self.register_buffer(
"attention_mask",
torch.tril(torch.ones(self.config.num_codebooks, self.config.num_codebooks, dtype=torch.bool)),
persistent=False,
)
def run_model(self, hidden_states, freqs_cis, attention_mask, input_pos: int = None, kv_cache: KVCache = None):
for layer in self.layers:
# TODO: gradient_checkpointing is disabled because of bug
if False: # self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
freqs_cis,
attention_mask,
use_reentrant=True,
)
else:
hidden_states = layer(hidden_states, freqs_cis, attention_mask, input_pos, kv_cache)
hidden_states = self.norm(hidden_states)
logits = self.token_head(hidden_states)
return logits.float()
# inp: [bs, hidden_size]
# labels: [bs, num_codebooks]
# logits: [bs, num_codebooks, codebook_size]
def forward(self, inp, labels):
bs = inp.shape[0]
hidden_states = self.input_proj(inp)
if self.freqs_cis.dtype != hidden_states.dtype:
self.freqs_cis = self.freqs_cis.to(dtype=hidden_states.dtype)
if labels is not None:
# Training mode
# Get embedding
assert bs == labels.shape[0] and labels.shape[1] == self.config.num_codebooks, f"Labels shape error: {labels.shape}"
hidden_states = [hidden_states[:, None, :], self.embeddings(labels[..., :-1]).to(hidden_states.dtype)]
hidden_states = torch.cat(hidden_states, dim=1) # [bs, num_codebooks, hidden_size]
# Run attention layers
logits = self.run_model(hidden_states, self.freqs_cis, self.attention_mask)
else:
# Inference mode
raise RuntimeError(f"Please call function \"inference\" in inference mode")
return logits
# inp: [bs, seq_len, hidden_size]
# out_tokens: [bs, 1, num_codebooks]
@torch.inference_mode()
def inference(self, inp, temperature=0, top_k=0):
# Only use the last hidden states for token computation
inp = inp[:, -1:, :]
bs = inp.shape[0]
if self.freqs_cis.dtype != inp.dtype:
self.freqs_cis = self.freqs_cis.to(dtype=inp.dtype)
inp = self.input_proj(inp)
# Inference mode
kv_cache = KVCache(
self.config.n_layer,
bs,
self.config.num_codebooks,
self.config.n_head,
self.config.head_dim,
dtype=inp.dtype,
device=inp.device,
)
# Generate one token per step
out_tokens = []
for input_pos in range(self.config.num_codebooks):
inp = inp.reshape(bs, 1, self.config.dim)
local_freqs_cis = self.freqs_cis[input_pos]
local_mask = self.attention_mask[None, None, input_pos, :self.config.num_codebooks]
logits = self.run_model(inp, local_freqs_cis, local_mask, input_pos, kv_cache)
logits = logits.squeeze(dim=1)
# Apply temperature and top-k
if temperature > 0:
logits = logits / temperature
if top_k > 0:
top_k = min(top_k, logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
# Do sample
probs = nn.functional.softmax(logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1)
next_tokens = next_tokens.reshape(bs, 1, 1)
inp = self.embeddings(next_tokens)
out_tokens.append(next_tokens)
return torch.cat(out_tokens, dim=-1)