Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -26,8 +26,14 @@ from huggingface_hub import hf_hub_download
|
|
26 |
|
27 |
from infer import load_model, eval_model
|
28 |
from spkr import SpeakerEmbedding
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
spkr_model =
|
|
|
31 |
model, tokenizer, tokenizer_voila, model_type = load_model("maitrix-org/Voila-chat", "maitrix-org/Voila-Tokenizer")
|
32 |
default_ref_file = "examples/character_ref_emb_demo.pkl"
|
33 |
default_ref_name = "Homer Simpson"
|
@@ -45,9 +51,7 @@ million_voice_ref_emb_mask_list = pickle.load(open(million_voice_ref_file, "rb")
|
|
45 |
|
46 |
def get_ref_embs(ref_audio):
|
47 |
wav, sr = torchaudio.load(ref_audio)
|
48 |
-
spkr_model.to("cuda")
|
49 |
ref_embs = spkr_model(wav, sr).cpu()
|
50 |
-
spkr_model.to("cpu")
|
51 |
return ref_embs
|
52 |
|
53 |
def delete_directory(request: gr.Request):
|
@@ -69,8 +73,10 @@ def call_bot(history, ref_embs, request: gr.Request):
|
|
69 |
}
|
70 |
formated_history["conversations"].append({"from": "assistant"})
|
71 |
print(formated_history)
|
72 |
-
ref_embs = torch.tensor(ref_embs, dtype=torch.float32, device="
|
73 |
-
ref_embs_mask = torch.tensor([1], device="
|
|
|
|
|
74 |
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_aiao", formated_history, ref_embs, ref_embs_mask, max_new_tokens=512)
|
75 |
if 'audio' in out:
|
76 |
wav, sr = out['audio']
|
@@ -93,8 +99,10 @@ def run_tts(text, ref_embs):
|
|
93 |
"conversations": [{'from': "user", 'text': text}],
|
94 |
}
|
95 |
formated_history["conversations"].append({"from": "assistant"})
|
96 |
-
ref_embs = torch.tensor(ref_embs, dtype=torch.float32, device="
|
97 |
-
ref_embs_mask = torch.tensor([1], device="
|
|
|
|
|
98 |
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_tts", formated_history, ref_embs, ref_embs_mask, max_new_tokens=512)
|
99 |
if 'audio' in out:
|
100 |
wav, sr = out['audio']
|
|
|
26 |
|
27 |
from infer import load_model, eval_model
|
28 |
from spkr import SpeakerEmbedding
|
29 |
+
|
30 |
+
@spaces.GPU
|
31 |
+
def spkr_model_init():
|
32 |
+
spkr_model = SpeakerEmbedding(device="cpu")
|
33 |
+
return spkr_model
|
34 |
|
35 |
+
spkr_model = spkr_model_init()
|
36 |
+
spkr_model.to("cuda")
|
37 |
model, tokenizer, tokenizer_voila, model_type = load_model("maitrix-org/Voila-chat", "maitrix-org/Voila-Tokenizer")
|
38 |
default_ref_file = "examples/character_ref_emb_demo.pkl"
|
39 |
default_ref_name = "Homer Simpson"
|
|
|
51 |
|
52 |
def get_ref_embs(ref_audio):
|
53 |
wav, sr = torchaudio.load(ref_audio)
|
|
|
54 |
ref_embs = spkr_model(wav, sr).cpu()
|
|
|
55 |
return ref_embs
|
56 |
|
57 |
def delete_directory(request: gr.Request):
|
|
|
73 |
}
|
74 |
formated_history["conversations"].append({"from": "assistant"})
|
75 |
print(formated_history)
|
76 |
+
ref_embs = torch.tensor(ref_embs, dtype=torch.float32, device="cpu")
|
77 |
+
ref_embs_mask = torch.tensor([1], device="cpu")
|
78 |
+
ref_embs.to("cuda")
|
79 |
+
ref_embs_mask.to("cuda")
|
80 |
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_aiao", formated_history, ref_embs, ref_embs_mask, max_new_tokens=512)
|
81 |
if 'audio' in out:
|
82 |
wav, sr = out['audio']
|
|
|
99 |
"conversations": [{'from': "user", 'text': text}],
|
100 |
}
|
101 |
formated_history["conversations"].append({"from": "assistant"})
|
102 |
+
ref_embs = torch.tensor(ref_embs, dtype=torch.float32, device="cpu")
|
103 |
+
ref_embs_mask = torch.tensor([1], device="cpu")
|
104 |
+
ref_embs.to("cuda")
|
105 |
+
ref_embs_mask.to("cuda")
|
106 |
out = eval_model(model, tokenizer, tokenizer_voila, model_type, "chat_tts", formated_history, ref_embs, ref_embs_mask, max_new_tokens=512)
|
107 |
if 'audio' in out:
|
108 |
wav, sr = out['audio']
|