Spaces:
Runtime error
Runtime error
import gradio as gr | |
from fastai.vision.all import * | |
from huggingface_hub import from_pretrained_fastai | |
from pathlib import Path | |
import glob | |
classes_file = Path('classes.txt') | |
if not classes_file.exists(): | |
raise FileNotFoundError(f"{classes_file} not found") | |
classes = classes_file.read_text().splitlines() | |
model_path = "makaveli10/tiny_vit_food_classifier" | |
learn = from_pretrained_fastai(model_path) | |
sample_folder = Path('samples') | |
if sample_folder.exists(): | |
sample_images = sorted(glob.glob(str(sample_folder / '*'))) | |
examples = [[img] for img in sample_images] | |
else: | |
examples = [] | |
def predict(img): | |
# img: PIL image | |
pred, idx, probs = learn.predict(img) | |
return {classes[i]: float(probs[i]) for i in range(len(classes))} | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type='pil'), | |
outputs=gr.Label(num_top_classes=5), | |
examples=examples, | |
title="Food-101 Classifier", | |
description="Upload an image of food or choose from examples to get predictions." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |