food-classifier / app.py
makaveli10's picture
load model from hf
ef189c4
import gradio as gr
from fastai.vision.all import *
from huggingface_hub import from_pretrained_fastai
from pathlib import Path
import glob
classes_file = Path('classes.txt')
if not classes_file.exists():
raise FileNotFoundError(f"{classes_file} not found")
classes = classes_file.read_text().splitlines()
model_path = "makaveli10/tiny_vit_food_classifier"
learn = from_pretrained_fastai(model_path)
sample_folder = Path('samples')
if sample_folder.exists():
sample_images = sorted(glob.glob(str(sample_folder / '*')))
examples = [[img] for img in sample_images]
else:
examples = []
def predict(img):
# img: PIL image
pred, idx, probs = learn.predict(img)
return {classes[i]: float(probs[i]) for i in range(len(classes))}
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type='pil'),
outputs=gr.Label(num_top_classes=5),
examples=examples,
title="Food-101 Classifier",
description="Upload an image of food or choose from examples to get predictions."
)
if __name__ == "__main__":
iface.launch()