Fabrice-TIERCELIN commited on
Commit
29ead0d
·
verified ·
1 Parent(s): 626ae4a

Delete app_endframe.py

Browse files
Files changed (1) hide show
  1. app_endframe.py +0 -822
app_endframe.py DELETED
@@ -1,822 +0,0 @@
1
- from diffusers_helper.hf_login import login
2
-
3
- import os
4
-
5
- os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
6
-
7
- import gradio as gr
8
- import torch
9
- import traceback
10
- import einops
11
- import safetensors.torch as sf
12
- import numpy as np
13
- import argparse
14
- import random
15
- import math
16
- # 20250506 pftq: Added for video input loading
17
- import decord
18
- # 20250506 pftq: Added for progress bars in video_encode
19
- from tqdm import tqdm
20
- # 20250506 pftq: Normalize file paths for Windows compatibility
21
- import pathlib
22
- # 20250506 pftq: for easier to read timestamp
23
- from datetime import datetime
24
- # 20250508 pftq: for saving prompt to mp4 comments metadata
25
- import imageio_ffmpeg
26
- import tempfile
27
- import shutil
28
- import subprocess
29
- import spaces
30
- from PIL import Image
31
- from diffusers import AutoencoderKLHunyuanVideo
32
- from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
33
- from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
34
- from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
35
- from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
36
- from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
37
- from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
38
- from diffusers_helper.thread_utils import AsyncStream, async_run
39
- from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
40
- from transformers import SiglipImageProcessor, SiglipVisionModel
41
- from diffusers_helper.clip_vision import hf_clip_vision_encode
42
- from diffusers_helper.bucket_tools import find_nearest_bucket
43
-
44
- parser = argparse.ArgumentParser()
45
- parser.add_argument('--share', action='store_true')
46
- parser.add_argument("--server", type=str, default='0.0.0.0')
47
- parser.add_argument("--port", type=int, required=False)
48
- parser.add_argument("--inbrowser", action='store_true')
49
- args = parser.parse_args()
50
-
51
- print(args)
52
-
53
- free_mem_gb = get_cuda_free_memory_gb(gpu)
54
- high_vram = free_mem_gb > 60
55
-
56
- print(f'Free VRAM {free_mem_gb} GB')
57
- print(f'High-VRAM Mode: {high_vram}')
58
-
59
- text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
60
- text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
61
- tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
62
- tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
63
- vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
64
-
65
- feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
66
- image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
67
-
68
- transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
69
-
70
- vae.eval()
71
- text_encoder.eval()
72
- text_encoder_2.eval()
73
- image_encoder.eval()
74
- transformer.eval()
75
-
76
- if not high_vram:
77
- vae.enable_slicing()
78
- vae.enable_tiling()
79
-
80
- transformer.high_quality_fp32_output_for_inference = True
81
- print('transformer.high_quality_fp32_output_for_inference = True')
82
-
83
- transformer.to(dtype=torch.bfloat16)
84
- vae.to(dtype=torch.float16)
85
- image_encoder.to(dtype=torch.float16)
86
- text_encoder.to(dtype=torch.float16)
87
- text_encoder_2.to(dtype=torch.float16)
88
-
89
- vae.requires_grad_(False)
90
- text_encoder.requires_grad_(False)
91
- text_encoder_2.requires_grad_(False)
92
- image_encoder.requires_grad_(False)
93
- transformer.requires_grad_(False)
94
-
95
- if not high_vram:
96
- # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
97
- DynamicSwapInstaller.install_model(transformer, device=gpu)
98
- DynamicSwapInstaller.install_model(text_encoder, device=gpu)
99
- else:
100
- text_encoder.to(gpu)
101
- text_encoder_2.to(gpu)
102
- image_encoder.to(gpu)
103
- vae.to(gpu)
104
- transformer.to(gpu)
105
-
106
- stream = AsyncStream()
107
-
108
- outputs_folder = './outputs/'
109
- os.makedirs(outputs_folder, exist_ok=True)
110
-
111
- # 20250506 pftq: Added function to encode input video frames into latents
112
- @torch.no_grad()
113
- def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
114
- """
115
- Encode a video into latent representations using the VAE.
116
-
117
- Args:
118
- video_path: Path to the input video file.
119
- vae: AutoencoderKLHunyuanVideo model.
120
- height, width: Target resolution for resizing frames.
121
- vae_batch_size: Number of frames to process per batch.
122
- device: Device for computation (e.g., "cuda").
123
-
124
- Returns:
125
- start_latent: Latent of the first frame (for compatibility with original code).
126
- input_image_np: First frame as numpy array (for CLIP vision encoding).
127
- history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
128
- fps: Frames per second of the input video.
129
- """
130
- # 20250506 pftq: Normalize video path for Windows compatibility
131
- video_path = str(pathlib.Path(video_path).resolve())
132
- print(f"Processing video: {video_path}")
133
-
134
- # 20250506 pftq: Check CUDA availability and fallback to CPU if needed
135
- if device == "cuda" and not torch.cuda.is_available():
136
- print("CUDA is not available, falling back to CPU")
137
- device = "cpu"
138
-
139
- try:
140
- # 20250506 pftq: Load video and get FPS
141
- print("Initializing VideoReader...")
142
- vr = decord.VideoReader(video_path)
143
- fps = vr.get_avg_fps() # Get input video FPS
144
- num_real_frames = len(vr)
145
- print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
146
-
147
- # Truncate to nearest latent size (multiple of 4)
148
- latent_size_factor = 4
149
- num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
150
- if num_frames != num_real_frames:
151
- print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
152
- num_real_frames = num_frames
153
-
154
- # 20250506 pftq: Read frames
155
- print("Reading video frames...")
156
- frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
157
- print(f"Frames read: {frames.shape}")
158
-
159
- # 20250506 pftq: Get native video resolution
160
- native_height, native_width = frames.shape[1], frames.shape[2]
161
- print(f"Native video resolution: {native_width}x{native_height}")
162
-
163
- # 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
164
- target_height = native_height if height is None else height
165
- target_width = native_width if width is None else width
166
-
167
- # 20250506 pftq: Adjust to nearest bucket for model compatibility
168
- if not no_resize:
169
- target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
170
- print(f"Adjusted resolution: {target_width}x{target_height}")
171
- else:
172
- print(f"Using native resolution without resizing: {target_width}x{target_height}")
173
-
174
- # 20250506 pftq: Preprocess frames to match original image processing
175
- processed_frames = []
176
- for i, frame in enumerate(frames):
177
- #print(f"Preprocessing frame {i+1}/{num_frames}")
178
- frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
179
- processed_frames.append(frame_np)
180
- processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
181
- print(f"Frames preprocessed: {processed_frames.shape}")
182
-
183
- # 20250506 pftq: Save first frame for CLIP vision encoding
184
- input_image_np = processed_frames[0]
185
- end_of_input_video_image_np = processed_frames[-1]
186
-
187
- # 20250506 pftq: Convert to tensor and normalize to [-1, 1]
188
- print("Converting frames to tensor...")
189
- frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
190
- frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
191
- frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
192
- frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
193
- print(f"Tensor shape: {frames_pt.shape}")
194
-
195
- # 20250507 pftq: Save pixel frames for use in worker
196
- input_video_pixels = frames_pt.cpu()
197
-
198
- # 20250506 pftq: Move to device
199
- print(f"Moving tensor to device: {device}")
200
- frames_pt = frames_pt.to(device)
201
- print("Tensor moved to device")
202
-
203
- # 20250506 pftq: Move VAE to device
204
- print(f"Moving VAE to device: {device}")
205
- vae.to(device)
206
- print("VAE moved to device")
207
-
208
- # 20250506 pftq: Encode frames in batches
209
- print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
210
- latents = []
211
- vae.eval()
212
- with torch.no_grad():
213
- for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
214
- #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
215
- batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
216
- try:
217
- # 20250506 pftq: Log GPU memory before encoding
218
- if device == "cuda":
219
- free_mem = torch.cuda.memory_allocated() / 1024**3
220
- #print(f"GPU memory before encoding: {free_mem:.2f} GB")
221
- batch_latent = vae_encode(batch, vae)
222
- # 20250506 pftq: Synchronize CUDA to catch issues
223
- if device == "cuda":
224
- torch.cuda.synchronize()
225
- #print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
226
- latents.append(batch_latent)
227
- #print(f"Batch encoded, latent shape: {batch_latent.shape}")
228
- except RuntimeError as e:
229
- print(f"Error during VAE encoding: {str(e)}")
230
- if device == "cuda" and "out of memory" in str(e).lower():
231
- print("CUDA out of memory, try reducing vae_batch_size or using CPU")
232
- raise
233
-
234
- # 20250506 pftq: Concatenate latents
235
- print("Concatenating latents...")
236
- history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
237
- print(f"History latents shape: {history_latents.shape}")
238
-
239
- # 20250506 pftq: Get first frame's latent
240
- start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
241
- end_of_input_video_latent = history_latents[:, :, -1:] # Shape: (1, channels, 1, height//8, width//8)
242
- print(f"Start latent shape: {start_latent.shape}")
243
-
244
- # 20250506 pftq: Move VAE back to CPU to free GPU memory
245
- if device == "cuda":
246
- vae.to(cpu)
247
- torch.cuda.empty_cache()
248
- print("VAE moved back to CPU, CUDA cache cleared")
249
-
250
- return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np
251
-
252
- except Exception as e:
253
- print(f"Error in video_encode: {str(e)}")
254
- raise
255
-
256
-
257
- # 20250507 pftq: New function to encode a single image (end frame)
258
- @torch.no_grad()
259
- def image_encode(image_np, target_width, target_height, vae, image_encoder, feature_extractor, device="cuda"):
260
- """
261
- Encode a single image into a latent and compute its CLIP vision embedding.
262
-
263
- Args:
264
- image_np: Input image as numpy array.
265
- target_width, target_height: Exact resolution to resize the image to (matches start frame).
266
- vae: AutoencoderKLHunyuanVideo model.
267
- image_encoder: SiglipVisionModel for CLIP vision encoding.
268
- feature_extractor: SiglipImageProcessor for preprocessing.
269
- device: Device for computation (e.g., "cuda").
270
-
271
- Returns:
272
- latent: Latent representation of the image (shape: [1, channels, 1, height//8, width//8]).
273
- clip_embedding: CLIP vision embedding of the image.
274
- processed_image_np: Processed image as numpy array (after resizing).
275
- """
276
- # 20250507 pftq: Process end frame with exact start frame dimensions
277
- print("Processing end frame...")
278
- try:
279
- print(f"Using exact start frame resolution for end frame: {target_width}x{target_height}")
280
-
281
- # Resize and preprocess image to match start frame
282
- processed_image_np = resize_and_center_crop(image_np, target_width=target_width, target_height=target_height)
283
-
284
- # Convert to tensor and normalize
285
- image_pt = torch.from_numpy(processed_image_np).float() / 127.5 - 1
286
- image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).unsqueeze(2) # Shape: [1, channels, 1, height, width]
287
- image_pt = image_pt.to(device)
288
-
289
- # Move VAE to device
290
- vae.to(device)
291
-
292
- # Encode to latent
293
- latent = vae_encode(image_pt, vae)
294
- print(f"image_encode vae output shape: {latent.shape}")
295
-
296
- # Move image encoder to device
297
- image_encoder.to(device)
298
-
299
- # Compute CLIP vision embedding
300
- clip_embedding = hf_clip_vision_encode(processed_image_np, feature_extractor, image_encoder).last_hidden_state
301
-
302
- # Move models back to CPU and clear cache
303
- if device == "cuda":
304
- vae.to(cpu)
305
- image_encoder.to(cpu)
306
- torch.cuda.empty_cache()
307
- print("VAE and image encoder moved back to CPU, CUDA cache cleared")
308
-
309
- print(f"End latent shape: {latent.shape}")
310
- return latent, clip_embedding, processed_image_np
311
-
312
- except Exception as e:
313
- print(f"Error in image_encode: {str(e)}")
314
- raise
315
-
316
- # 20250508 pftq: for saving prompt to mp4 metadata comments
317
- def set_mp4_comments_imageio_ffmpeg(input_file, comments):
318
- try:
319
- # Get the path to the bundled FFmpeg binary from imageio-ffmpeg
320
- ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
321
-
322
- # Check if input file exists
323
- if not os.path.exists(input_file):
324
- print(f"Error: Input file {input_file} does not exist")
325
- return False
326
-
327
- # Create a temporary file path
328
- temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
329
-
330
- # FFmpeg command using the bundled binary
331
- command = [
332
- ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
333
- '-i', input_file, # input file
334
- '-metadata', f'comment={comments}', # set comment metadata
335
- '-c:v', 'copy', # copy video stream without re-encoding
336
- '-c:a', 'copy', # copy audio stream without re-encoding
337
- '-y', # overwrite output file if it exists
338
- temp_file # temporary output file
339
- ]
340
-
341
- # Run the FFmpeg command
342
- result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
343
-
344
- if result.returncode == 0:
345
- # Replace the original file with the modified one
346
- shutil.move(temp_file, input_file)
347
- print(f"Successfully added comments to {input_file}")
348
- return True
349
- else:
350
- # Clean up temp file if FFmpeg fails
351
- if os.path.exists(temp_file):
352
- os.remove(temp_file)
353
- print(f"Error: FFmpeg failed with message:\n{result.stderr}")
354
- return False
355
-
356
- except Exception as e:
357
- # Clean up temp file in case of other errors
358
- if 'temp_file' in locals() and os.path.exists(temp_file):
359
- os.remove(temp_file)
360
- print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
361
- return False
362
-
363
- # 20250506 pftq: Modified worker to accept video input, and clean frame count
364
- @torch.no_grad()
365
- def worker(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
366
-
367
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
368
-
369
- try:
370
- # Clean GPU
371
- if not high_vram:
372
- unload_complete_models(
373
- text_encoder, text_encoder_2, image_encoder, vae, transformer
374
- )
375
-
376
- # Text encoding
377
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
378
-
379
- if not high_vram:
380
- fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
381
- load_model_as_complete(text_encoder_2, target_device=gpu)
382
-
383
- llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
384
-
385
- if cfg == 1:
386
- llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
387
- else:
388
- llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
389
-
390
- llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
391
- llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
392
-
393
- # 20250506 pftq: Processing input video instead of image
394
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
395
-
396
- # 20250506 pftq: Encode video
397
- start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
398
-
399
- #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
400
-
401
- # CLIP Vision
402
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
403
-
404
- if not high_vram:
405
- load_model_as_complete(image_encoder, target_device=gpu)
406
-
407
- image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
408
- image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
409
- start_embedding = image_encoder_last_hidden_state
410
-
411
- end_of_input_video_output = hf_clip_vision_encode(end_of_input_video_image_np, feature_extractor, image_encoder)
412
- end_of_input_video_last_hidden_state = end_of_input_video_output.last_hidden_state
413
- end_of_input_video_embedding = end_of_input_video_last_hidden_state
414
-
415
- # 20250507 pftq: Process end frame if provided
416
- end_latent = None
417
- end_clip_embedding = None
418
- if end_frame is not None:
419
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'End frame encoding ...'))))
420
- end_latent, end_clip_embedding, _ = image_encode(
421
- end_frame, target_width=width, target_height=height, vae=vae,
422
- image_encoder=image_encoder, feature_extractor=feature_extractor, device=gpu
423
- )
424
-
425
- # Dtype
426
- llama_vec = llama_vec.to(transformer.dtype)
427
- llama_vec_n = llama_vec_n.to(transformer.dtype)
428
- clip_l_pooler = clip_l_pooler.to(transformer.dtype)
429
- clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
430
- image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
431
- end_of_input_video_embedding = end_of_input_video_embedding.to(transformer.dtype)
432
-
433
- # 20250509 pftq: Restored original placement of total_latent_sections after video_encode
434
- total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
435
- total_latent_sections = int(max(round(total_latent_sections), 1))
436
-
437
- for idx in range(batch):
438
- if batch > 1:
439
- print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
440
-
441
- job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepack-videoinput-endframe_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}"
442
-
443
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
444
-
445
- rnd = torch.Generator("cpu").manual_seed(seed)
446
-
447
- history_latents = video_latents.cpu()
448
- history_pixels = None
449
- total_generated_latent_frames = 0
450
- previous_video = None
451
-
452
-
453
- # 20250509 Generate backwards with end frame for better end frame anchoring
454
- if total_latent_sections > 4:
455
- latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
456
- else:
457
- latent_paddings = list(reversed(range(total_latent_sections)))
458
-
459
- for section_index, latent_padding in enumerate(latent_paddings):
460
- is_start_of_video = latent_padding == 0
461
- is_end_of_video = latent_padding == latent_paddings[0]
462
- latent_padding_size = latent_padding * latent_window_size
463
-
464
- if stream.input_queue.top() == 'end':
465
- stream.output_queue.push(('end', None))
466
- return
467
-
468
- if not high_vram:
469
- unload_complete_models()
470
- move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
471
-
472
- if use_teacache:
473
- transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
474
- else:
475
- transformer.initialize_teacache(enable_teacache=False)
476
-
477
- def callback(d):
478
- try:
479
- preview = d['denoised']
480
- preview = vae_decode_fake(preview)
481
- preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
482
- preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
483
- if stream.input_queue.top() == 'end':
484
- stream.output_queue.push(('end', None))
485
- raise KeyboardInterrupt('User ends the task.')
486
- current_step = d['i'] + 1
487
- percentage = int(100.0 * current_step / steps)
488
- hint = f'Sampling {current_step}/{steps}'
489
- desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. Generating part {total_latent_sections - section_index} of {total_latent_sections} backward...'
490
- stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
491
- except ConnectionResetError as e:
492
- print(f"Suppressed ConnectionResetError in callback: {e}")
493
- return
494
-
495
- # 20250509 pftq: Dynamic frame allocation like original num_clean_frames, fix split error
496
- available_frames = video_latents.shape[2] if is_start_of_video else history_latents.shape[2]
497
- if is_start_of_video:
498
- effective_clean_frames = 1 # avoid jumpcuts from input video
499
- else:
500
- effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 1
501
- clean_latent_pre_frames = effective_clean_frames
502
- num_2x_frames = min(2, max(1, available_frames - clean_latent_pre_frames - 1)) if available_frames > clean_latent_pre_frames + 1 else 1
503
- num_4x_frames = min(16, max(1, available_frames - clean_latent_pre_frames - num_2x_frames)) if available_frames > clean_latent_pre_frames + num_2x_frames else 1
504
- total_context_frames = num_2x_frames + num_4x_frames
505
- total_context_frames = min(total_context_frames, available_frames - clean_latent_pre_frames)
506
-
507
- # 20250511 pftq: Dynamically adjust post_frames based on clean_latents_post
508
- post_frames = 1 if is_end_of_video and end_latent is not None else effective_clean_frames # 20250511 pftq: Single frame for end_latent, otherwise padding causes still image
509
- indices = torch.arange(0, clean_latent_pre_frames + latent_padding_size + latent_window_size + post_frames + num_2x_frames + num_4x_frames).unsqueeze(0)
510
- clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split(
511
- [clean_latent_pre_frames, latent_padding_size, latent_window_size, post_frames, num_2x_frames, num_4x_frames], dim=1
512
- )
513
- clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
514
-
515
- # 20250509 pftq: Split context frames dynamically for 2x and 4x only
516
- context_frames = history_latents[:, :, -(total_context_frames + clean_latent_pre_frames):-clean_latent_pre_frames, :, :] if total_context_frames > 0 else history_latents[:, :, :1, :, :]
517
- split_sizes = [num_4x_frames, num_2x_frames]
518
- split_sizes = [s for s in split_sizes if s > 0]
519
- if split_sizes and context_frames.shape[2] >= sum(split_sizes):
520
- splits = context_frames.split(split_sizes, dim=2)
521
- split_idx = 0
522
- clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :1, :, :]
523
- split_idx += 1 if num_4x_frames > 0 else 0
524
- clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :1, :, :]
525
- else:
526
- clean_latents_4x = clean_latents_2x = history_latents[:, :, :1, :, :]
527
-
528
- clean_latents_pre = video_latents[:, :, -min(effective_clean_frames, video_latents.shape[2]):].to(history_latents) # smoother motion but jumpcuts if end frame is too different, must change clean_latent_pre_frames to effective_clean_frames also
529
- clean_latents_post = history_latents[:, :, :min(effective_clean_frames, history_latents.shape[2]), :, :] # smoother motion, must change post_frames to effective_clean_frames also
530
-
531
- if is_end_of_video:
532
- clean_latents_post = torch.zeros_like(end_of_input_video_latent).to(history_latents)
533
-
534
- # 20250509 pftq: handle end frame if available
535
- if end_latent is not None:
536
- #current_end_frame_weight = end_frame_weight * (latent_padding / latent_paddings[0])
537
- #current_end_frame_weight = current_end_frame_weight * 0.5 + 0.5
538
- current_end_frame_weight = end_frame_weight # changing this over time introduces discontinuity
539
- # 20250511 pftq: Removed end frame weight adjustment as it has no effect
540
- image_encoder_last_hidden_state = (1 - current_end_frame_weight) * end_of_input_video_embedding + end_clip_embedding * current_end_frame_weight
541
- image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
542
-
543
- # 20250511 pftq: Use end_latent only
544
- if is_end_of_video:
545
- clean_latents_post = end_latent.to(history_latents)[:, :, :1, :, :] # Ensure single frame
546
-
547
- # 20250511 pftq: Pad clean_latents_pre to match clean_latent_pre_frames if needed
548
- if clean_latents_pre.shape[2] < clean_latent_pre_frames:
549
- clean_latents_pre = clean_latents_pre.repeat(1, 1, clean_latent_pre_frames // clean_latents_pre.shape[2], 1, 1)
550
- # 20250511 pftq: Pad clean_latents_post to match post_frames if needed
551
- if clean_latents_post.shape[2] < post_frames:
552
- clean_latents_post = clean_latents_post.repeat(1, 1, post_frames // clean_latents_post.shape[2], 1, 1)
553
-
554
- clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
555
-
556
- max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
557
- print(f"Generating video {idx+1} of {batch} with seed {seed}, part {total_latent_sections - section_index} of {total_latent_sections} backward")
558
- generated_latents = sample_hunyuan(
559
- transformer=transformer,
560
- sampler='unipc',
561
- width=width,
562
- height=height,
563
- frames=max_frames,
564
- real_guidance_scale=cfg,
565
- distilled_guidance_scale=gs,
566
- guidance_rescale=rs,
567
- num_inference_steps=steps,
568
- generator=rnd,
569
- prompt_embeds=llama_vec,
570
- prompt_embeds_mask=llama_attention_mask,
571
- prompt_poolers=clip_l_pooler,
572
- negative_prompt_embeds=llama_vec_n,
573
- negative_prompt_embeds_mask=llama_attention_mask_n,
574
- negative_prompt_poolers=clip_l_pooler_n,
575
- device=gpu,
576
- dtype=torch.bfloat16,
577
- image_embeddings=image_encoder_last_hidden_state,
578
- latent_indices=latent_indices,
579
- clean_latents=clean_latents,
580
- clean_latent_indices=clean_latent_indices,
581
- clean_latents_2x=clean_latents_2x,
582
- clean_latent_2x_indices=clean_latent_2x_indices,
583
- clean_latents_4x=clean_latents_4x,
584
- clean_latent_4x_indices=clean_latent_4x_indices,
585
- callback=callback,
586
- )
587
-
588
- if is_start_of_video:
589
- generated_latents = torch.cat([video_latents[:, :, -1:].to(generated_latents), generated_latents], dim=2)
590
-
591
- total_generated_latent_frames += int(generated_latents.shape[2])
592
- history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
593
-
594
- if not high_vram:
595
- offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
596
- load_model_as_complete(vae, target_device=gpu)
597
-
598
- real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
599
- if history_pixels is None:
600
- history_pixels = vae_decode(real_history_latents, vae).cpu()
601
- else:
602
- section_latent_frames = (latent_window_size * 2 + 1) if is_start_of_video else (latent_window_size * 2)
603
- overlapped_frames = latent_window_size * 4 - 3
604
- current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
605
- history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
606
-
607
- if not high_vram:
608
- unload_complete_models()
609
-
610
- output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
611
- save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
612
- print(f"Latest video saved: {output_filename}")
613
- set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
614
- print(f"Prompt saved to mp4 metadata comments: {output_filename}")
615
-
616
- if previous_video is not None and os.path.exists(previous_video):
617
- try:
618
- os.remove(previous_video)
619
- print(f"Previous partial video deleted: {previous_video}")
620
- except Exception as e:
621
- print(f"Error deleting previous partial video {previous_video}: {e}")
622
- previous_video = output_filename
623
-
624
- print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
625
- stream.output_queue.push(('file', output_filename))
626
-
627
- if is_start_of_video:
628
- break
629
-
630
- history_pixels = torch.cat([input_video_pixels, history_pixels], dim=2)
631
- #overlapped_frames = latent_window_size * 4 - 3
632
- #history_pixels = soft_append_bcthw(input_video_pixels, history_pixels, overlapped_frames)
633
-
634
- output_filename = os.path.join(outputs_folder, f'{job_id}_final.mp4')
635
- save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
636
- print(f"Final video with input blend saved: {output_filename}")
637
- set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
638
- print(f"Prompt saved to mp4 metadata comments: {output_filename}")
639
- stream.output_queue.push(('file', output_filename))
640
-
641
- if previous_video is not None and os.path.exists(previous_video):
642
- try:
643
- os.remove(previous_video)
644
- print(f"Previous partial video deleted: {previous_video}")
645
- except Exception as e:
646
- print(f"Error deleting previous partial video {previous_video}: {e}")
647
- previous_video = output_filename
648
-
649
- print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
650
-
651
- stream.output_queue.push(('file', output_filename))
652
-
653
- seed = (seed + 1) % np.iinfo(np.int32).max
654
-
655
- except:
656
- traceback.print_exc()
657
-
658
- if not high_vram:
659
- unload_complete_models(
660
- text_encoder, text_encoder_2, image_encoder, vae, transformer
661
- )
662
-
663
- stream.output_queue.push(('end', None))
664
- return
665
-
666
- # 20250506 pftq: Modified process to pass clean frame count, etc
667
- def get_duration(
668
- input_video, end_frame, end_frame_weight, prompt, n_prompt,
669
- randomize_seed,
670
- seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache,
671
- no_resize, mp4_crf, num_clean_frames, vae_batch):
672
- return total_second_length * 60 * 2
673
-
674
- @spaces.GPU(duration=get_duration)
675
- def process(
676
- input_video, end_frame, end_frame_weight, prompt, n_prompt,
677
- randomize_seed,
678
- seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache,
679
- no_resize, mp4_crf, num_clean_frames, vae_batch):
680
- global stream, high_vram
681
-
682
- if torch.cuda.device_count() == 0:
683
- gr.Warning('Set this space to GPU config to make it work.')
684
- return None, None, None, None, None, None
685
-
686
- if randomize_seed:
687
- seed = random.randint(0, np.iinfo(np.int32).max)
688
-
689
- # 20250506 pftq: Updated assertion for video input
690
- assert input_video is not None, 'No input video!'
691
-
692
- yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
693
-
694
- # 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
695
- if high_vram and (no_resize or resolution>640):
696
- print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
697
- high_vram = False
698
- vae.enable_slicing()
699
- vae.enable_tiling()
700
- DynamicSwapInstaller.install_model(transformer, device=gpu)
701
- DynamicSwapInstaller.install_model(text_encoder, device=gpu)
702
-
703
- # 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
704
- if cfg > 1:
705
- gs = 1
706
-
707
- stream = AsyncStream()
708
-
709
- # 20250506 pftq: Pass num_clean_frames, vae_batch, etc
710
- async_run(worker, input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
711
-
712
- output_filename = None
713
-
714
- while True:
715
- flag, data = stream.output_queue.next()
716
-
717
- if flag == 'file':
718
- output_filename = data
719
- yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
720
-
721
- if flag == 'progress':
722
- preview, desc, html = data
723
- #yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
724
- yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
725
-
726
- if flag == 'end':
727
- yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False)
728
- break
729
-
730
- def end_process():
731
- stream.input_queue.push('end')
732
-
733
- quick_prompts = [
734
- 'The girl dances gracefully, with clear movements, full of charm.',
735
- 'A character doing some simple body movements.',
736
- ]
737
- quick_prompts = [[x] for x in quick_prompts]
738
-
739
- css = make_progress_bar_css()
740
- block = gr.Blocks(css=css).queue(
741
- max_size=10 # 20250507 pftq: Limit queue size
742
- )
743
- with block:
744
- if torch.cuda.device_count() == 0:
745
- with gr.Row():
746
- gr.HTML("""
747
- <p style="background-color: red;"><big><big><big><b>⚠️To use FramePack, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
748
-
749
- You can't use FramePack directly here because this space runs on a CPU, which is not enough for FramePack. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
750
- </big></big></big></p>
751
- """)
752
- # 20250506 pftq: Updated title to reflect video input functionality
753
- gr.Markdown('# Framepack with Video Input (Video Extension) + End Frame')
754
- with gr.Row():
755
- with gr.Column():
756
-
757
- # 20250506 pftq: Changed to Video input from Image
758
- with gr.Row():
759
- input_video = gr.Video(sources='upload', label="Input Video", height=320)
760
- with gr.Column():
761
- # 20250507 pftq: Added end_frame + weight
762
- end_frame = gr.Image(sources='upload', type="numpy", label="End Frame (Optional) - Reduce context frames if very different from input video or if it is jumpcutting/slowing to still image.", height=320)
763
- end_frame_weight = gr.Slider(label="End Frame Weight", minimum=0.0, maximum=1.0, value=1.0, step=0.01, info='Reduce to treat more as a reference image; no effect')
764
-
765
- prompt = gr.Textbox(label="Prompt", value='')
766
-
767
- with gr.Row():
768
- start_button = gr.Button(value="Start Generation", variant="primary")
769
- end_button = gr.Button(value="End Generation", variant="stop", interactive=False)
770
-
771
- with gr.Accordion("Advanced settings", open=False):
772
- with gr.Row():
773
- use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
774
- no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
775
-
776
- randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different')
777
- seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True)
778
-
779
- batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
780
-
781
- resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0)
782
-
783
- total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
784
-
785
- # 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
786
- gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
787
- cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, info='Use instead of Distilled for more detail/control + Negative Prompt (make sure Distilled=1). Doubles render time.') # Should not change
788
- rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01) # Should not change
789
-
790
- n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, unrealistic position, blurred, blurry", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
791
-
792
- steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Expensive. Increase for more quality, especially if using high non-distilled CFG.')
793
-
794
- # 20250506 pftq: Renamed slider to Number of Context Frames and updated description
795
- num_clean_frames = gr.Slider(label="Number of Context Frames (Adherence to Video)", minimum=2, maximum=10, value=5, step=1, info="Expensive. Retain more video details. Reduce if memory issues or motion too restricted (jumpcut, ignoring prompt, still).")
796
-
797
- default_vae = 32
798
- if high_vram:
799
- default_vae = 128
800
- elif free_mem_gb>=20:
801
- default_vae = 64
802
-
803
- vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Expensive. Increase for better quality frames during fast motion. Reduce if running out of memory")
804
-
805
- latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=49, value=9, step=1, info='Expensive. Generate more frames at a time (larger chunks). Less degradation but higher VRAM cost.')
806
-
807
- gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
808
-
809
- mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
810
-
811
- with gr.Column():
812
- preview_image = gr.Image(label="Next Latents", height=200, visible=False)
813
- result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
814
- progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
815
- progress_bar = gr.HTML('', elem_classes='no-generating-animation')
816
-
817
- # 20250506 pftq: Updated inputs to include num_clean_frames
818
- ips = [input_video, end_frame, end_frame_weight, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
819
- start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
820
- end_button.click(fn=end_process)
821
-
822
- block.launch(share=True)