Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,55 +1,48 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from diffusers import StableVideoDiffusionPipeline, EulerDiscreteScheduler
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
# Create the Gradio interface
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
video_output = gr.Video(label="Generated Video")
|
| 46 |
-
|
| 47 |
-
run_button.click(
|
| 48 |
-
generate_video,
|
| 49 |
-
inputs=[image_input, num_frames_input, height_input, width_input],
|
| 50 |
-
outputs=video_output
|
| 51 |
-
)
|
| 52 |
|
| 53 |
# Launch the interface
|
| 54 |
-
|
| 55 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from diffusers import StableVideoDiffusionPipeline
|
| 4 |
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
from moviepy.editor import ImageSequenceClip
|
| 7 |
+
|
| 8 |
+
# Load the pipeline
|
| 9 |
+
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 10 |
+
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 11 |
+
)
|
| 12 |
+
pipeline.enable_model_cpu_offload()
|
| 13 |
+
|
| 14 |
+
def generate_video(image, seed):
|
| 15 |
+
# Preprocess the image
|
| 16 |
+
image = Image.open(image)
|
| 17 |
+
image = image.resize((1024, 576))
|
| 18 |
+
|
| 19 |
+
# Set the generator seed
|
| 20 |
+
generator = torch.manual_seed(seed)
|
| 21 |
+
|
| 22 |
+
# Generate the video frames
|
| 23 |
+
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
|
| 24 |
+
|
| 25 |
+
# Convert frames to a format suitable for video export
|
| 26 |
+
frames = [(frame * 255).astype(np.uint8) for frame in frames]
|
| 27 |
+
|
| 28 |
+
# Export the frames to a video file
|
| 29 |
+
clip = ImageSequenceClip(frames, fps=7)
|
| 30 |
+
output_video_path = "generated.mp4"
|
| 31 |
+
clip.write_videofile(output_video_path, codec="libx264")
|
| 32 |
+
|
| 33 |
+
return output_video_path
|
| 34 |
|
| 35 |
# Create the Gradio interface
|
| 36 |
+
iface = gr.Interface(
|
| 37 |
+
fn=generate_video,
|
| 38 |
+
inputs=[
|
| 39 |
+
gr.Image(type="file", label="Upload Image"),
|
| 40 |
+
gr.Number(label="Seed", value=42)
|
| 41 |
+
],
|
| 42 |
+
outputs=gr.Video(label="Generated Video"),
|
| 43 |
+
title="Stable Video Diffusion",
|
| 44 |
+
description="Generate a video from an uploaded image using Stable Video Diffusion."
|
| 45 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# Launch the interface
|
| 48 |
+
iface.launch()
|
|
|