Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,124 +6,87 @@ import numpy as np
|
|
| 6 |
import tempfile
|
| 7 |
from typing import Optional, Tuple
|
| 8 |
import time
|
| 9 |
-
import subprocess
|
| 10 |
-
import sys
|
| 11 |
|
| 12 |
-
# ZeroGPU
|
| 13 |
try:
|
| 14 |
import spaces
|
| 15 |
SPACES_AVAILABLE = True
|
| 16 |
-
print("β
Spaces library loaded - H200 ready!")
|
| 17 |
except ImportError:
|
| 18 |
SPACES_AVAILABLE = False
|
| 19 |
class spaces:
|
| 20 |
@staticmethod
|
| 21 |
-
def GPU(duration=
|
| 22 |
def decorator(func): return func
|
| 23 |
return decorator
|
| 24 |
|
| 25 |
-
# Environment
|
| 26 |
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
|
| 27 |
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
| 28 |
HAS_CUDA = torch.cuda.is_available()
|
| 29 |
|
| 30 |
-
print(f"π Environment: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}, CUDA={HAS_CUDA}")
|
| 31 |
|
| 32 |
-
|
| 33 |
-
"""Install any missing packages"""
|
| 34 |
-
try:
|
| 35 |
-
print("π Checking and installing packages...")
|
| 36 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "diffusers>=0.31.0"])
|
| 37 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "transformers>=4.36.0"])
|
| 38 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "accelerate"])
|
| 39 |
-
print("β
Packages updated successfully")
|
| 40 |
-
return True
|
| 41 |
-
except Exception as e:
|
| 42 |
-
print(f"β Package installation failed: {e}")
|
| 43 |
-
return False
|
| 44 |
-
|
| 45 |
-
def check_available_pipelines():
|
| 46 |
-
"""Check what pipelines are actually available"""
|
| 47 |
-
available = {}
|
| 48 |
-
|
| 49 |
-
try:
|
| 50 |
-
from diffusers import DiffusionPipeline
|
| 51 |
-
available['DiffusionPipeline'] = True
|
| 52 |
-
except ImportError:
|
| 53 |
-
available['DiffusionPipeline'] = False
|
| 54 |
-
|
| 55 |
-
try:
|
| 56 |
-
from diffusers import LTXVideoPipeline
|
| 57 |
-
available['LTXVideoPipeline'] = True
|
| 58 |
-
except ImportError:
|
| 59 |
-
available['LTXVideoPipeline'] = False
|
| 60 |
-
|
| 61 |
-
try:
|
| 62 |
-
from diffusers import HunyuanVideoPipeline
|
| 63 |
-
available['HunyuanVideoPipeline'] = True
|
| 64 |
-
except ImportError:
|
| 65 |
-
available['HunyuanVideoPipeline'] = False
|
| 66 |
-
|
| 67 |
-
try:
|
| 68 |
-
from diffusers import CogVideoXPipeline
|
| 69 |
-
available['CogVideoXPipeline'] = True
|
| 70 |
-
except ImportError:
|
| 71 |
-
available['CogVideoXPipeline'] = False
|
| 72 |
-
|
| 73 |
-
return available
|
| 74 |
-
|
| 75 |
-
# Simplified working models - confirmed to work
|
| 76 |
WORKING_MODELS = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
{
|
| 78 |
"id": "cerspense/zeroscope_v2_576w",
|
| 79 |
"name": "Zeroscope V2",
|
| 80 |
-
"
|
|
|
|
|
|
|
| 81 |
"resolution": (576, 320),
|
| 82 |
"max_frames": 24,
|
| 83 |
"dtype": torch.float16,
|
| 84 |
-
"
|
|
|
|
| 85 |
},
|
| 86 |
{
|
| 87 |
"id": "damo-vilab/text-to-video-ms-1.7b",
|
| 88 |
"name": "ModelScope T2V",
|
| 89 |
-
"
|
|
|
|
|
|
|
| 90 |
"resolution": (256, 256),
|
| 91 |
-
"max_frames": 16,
|
| 92 |
"dtype": torch.float16,
|
| 93 |
-
"
|
|
|
|
| 94 |
},
|
| 95 |
{
|
| 96 |
"id": "ali-vilab/text-to-video-ms-1.7b",
|
| 97 |
"name": "AliVilab T2V",
|
| 98 |
-
"
|
| 99 |
-
"
|
|
|
|
|
|
|
| 100 |
"max_frames": 16,
|
| 101 |
"dtype": torch.float16,
|
| 102 |
-
"
|
| 103 |
-
|
| 104 |
-
]
|
| 105 |
-
|
| 106 |
-
# Try premium models but with fallbacks
|
| 107 |
-
PREMIUM_MODELS = [
|
| 108 |
-
{
|
| 109 |
-
"id": "Lightricks/LTX-Video",
|
| 110 |
-
"name": "LTX-Video",
|
| 111 |
-
"pipeline": "LTXVideoPipeline",
|
| 112 |
-
"fallback_pipeline": "DiffusionPipeline",
|
| 113 |
-
"resolution": (512, 512),
|
| 114 |
-
"max_frames": 50,
|
| 115 |
-
"dtype": torch.bfloat16,
|
| 116 |
-
"description": "Premium quality video generation"
|
| 117 |
-
},
|
| 118 |
-
{
|
| 119 |
-
"id": "tencent/HunyuanVideo",
|
| 120 |
-
"name": "HunyuanVideo",
|
| 121 |
-
"pipeline": "HunyuanVideoPipeline",
|
| 122 |
-
"fallback_pipeline": "DiffusionPipeline",
|
| 123 |
-
"resolution": (512, 512),
|
| 124 |
-
"max_frames": 40,
|
| 125 |
-
"dtype": torch.bfloat16,
|
| 126 |
-
"description": "Advanced video model"
|
| 127 |
}
|
| 128 |
]
|
| 129 |
|
|
@@ -133,151 +96,144 @@ MODEL_INFO = None
|
|
| 133 |
LOADING_LOGS = []
|
| 134 |
|
| 135 |
def log_loading(message):
|
| 136 |
-
"""
|
| 137 |
global LOADING_LOGS
|
| 138 |
print(message)
|
| 139 |
-
LOADING_LOGS.append(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
-
def
|
| 142 |
-
"""Load
|
| 143 |
global MODEL, MODEL_INFO, LOADING_LOGS
|
| 144 |
|
| 145 |
if MODEL is not None:
|
| 146 |
return True
|
| 147 |
|
| 148 |
LOADING_LOGS = []
|
| 149 |
-
log_loading("π
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
log_loading("β Package installation failed")
|
| 154 |
|
| 155 |
-
#
|
| 156 |
-
|
| 157 |
-
log_loading(f"π Available pipelines: {available_pipelines}")
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
for model_config in PREMIUM_MODELS:
|
| 162 |
-
if try_load_model(model_config, available_pipelines):
|
| 163 |
return True
|
| 164 |
|
| 165 |
-
|
| 166 |
-
log_loading("π Falling back to reliable models...")
|
| 167 |
-
for model_config in WORKING_MODELS:
|
| 168 |
-
if try_load_model(model_config, available_pipelines):
|
| 169 |
-
return True
|
| 170 |
-
|
| 171 |
-
log_loading("β All models failed to load")
|
| 172 |
return False
|
| 173 |
|
| 174 |
-
def
|
| 175 |
-
"""Try
|
| 176 |
global MODEL, MODEL_INFO
|
| 177 |
|
| 178 |
-
model_id =
|
| 179 |
-
model_name =
|
| 180 |
|
| 181 |
-
log_loading(f"π
|
|
|
|
| 182 |
|
| 183 |
try:
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
if available_pipelines.get(primary_pipeline, False):
|
| 189 |
-
try:
|
| 190 |
-
log_loading(f" π₯ Loading with {primary_pipeline}...")
|
| 191 |
-
|
| 192 |
-
if primary_pipeline == "LTXVideoPipeline":
|
| 193 |
-
from diffusers import LTXVideoPipeline
|
| 194 |
-
pipe = LTXVideoPipeline.from_pretrained(
|
| 195 |
-
model_id,
|
| 196 |
-
torch_dtype=model_config["dtype"],
|
| 197 |
-
use_safetensors=True,
|
| 198 |
-
variant="fp16"
|
| 199 |
-
)
|
| 200 |
-
elif primary_pipeline == "HunyuanVideoPipeline":
|
| 201 |
-
from diffusers import HunyuanVideoPipeline
|
| 202 |
-
pipe = HunyuanVideoPipeline.from_pretrained(
|
| 203 |
-
model_id,
|
| 204 |
-
torch_dtype=model_config["dtype"],
|
| 205 |
-
use_safetensors=True,
|
| 206 |
-
variant="fp16"
|
| 207 |
-
)
|
| 208 |
-
else:
|
| 209 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 210 |
-
model_id,
|
| 211 |
-
torch_dtype=model_config["dtype"],
|
| 212 |
-
use_safetensors=True,
|
| 213 |
-
variant="fp16"
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
log_loading(f" β
Loaded with {primary_pipeline}")
|
| 217 |
-
|
| 218 |
-
except Exception as e:
|
| 219 |
-
log_loading(f" β {primary_pipeline} failed: {e}")
|
| 220 |
-
raise e
|
| 221 |
|
| 222 |
-
#
|
|
|
|
|
|
|
|
|
|
| 223 |
else:
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
if HAS_CUDA:
|
| 235 |
pipe = pipe.to("cuda")
|
| 236 |
-
log_loading(f" π± Moved to H200 CUDA")
|
| 237 |
|
| 238 |
-
#
|
| 239 |
-
if hasattr(pipe, 'enable_sequential_cpu_offload'):
|
| 240 |
-
pipe.enable_sequential_cpu_offload()
|
| 241 |
if hasattr(pipe, 'enable_vae_slicing'):
|
| 242 |
pipe.enable_vae_slicing()
|
|
|
|
|
|
|
| 243 |
if hasattr(pipe, 'enable_vae_tiling'):
|
| 244 |
pipe.enable_vae_tiling()
|
|
|
|
| 245 |
|
| 246 |
-
|
|
|
|
|
|
|
| 247 |
|
| 248 |
-
#
|
| 249 |
-
log_loading(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
MODEL = pipe
|
| 252 |
-
MODEL_INFO =
|
| 253 |
|
| 254 |
-
log_loading(f"β
{model_name} loaded
|
| 255 |
return True
|
| 256 |
|
| 257 |
except Exception as e:
|
| 258 |
log_loading(f"β {model_name} failed: {str(e)}")
|
| 259 |
-
# Clear memory before
|
| 260 |
if HAS_CUDA:
|
| 261 |
torch.cuda.empty_cache()
|
| 262 |
gc.collect()
|
| 263 |
return False
|
| 264 |
|
| 265 |
-
@spaces.GPU(duration=
|
| 266 |
def generate_video(
|
| 267 |
prompt: str,
|
| 268 |
negative_prompt: str = "",
|
| 269 |
-
num_frames: int =
|
| 270 |
-
num_inference_steps: int =
|
| 271 |
guidance_scale: float = 7.5,
|
| 272 |
seed: int = -1
|
| 273 |
) -> Tuple[Optional[str], str]:
|
| 274 |
-
"""Generate video with
|
| 275 |
|
| 276 |
global MODEL, MODEL_INFO
|
| 277 |
|
| 278 |
# Load model if needed
|
| 279 |
-
if not
|
| 280 |
-
|
|
|
|
| 281 |
|
| 282 |
# Input validation
|
| 283 |
if not prompt.strip():
|
|
@@ -287,14 +243,12 @@ def generate_video(
|
|
| 287 |
max_frames = MODEL_INFO["max_frames"]
|
| 288 |
width, height = MODEL_INFO["resolution"]
|
| 289 |
|
| 290 |
-
#
|
| 291 |
num_frames = min(max(num_frames, 8), max_frames)
|
| 292 |
|
| 293 |
try:
|
| 294 |
-
#
|
| 295 |
-
if HAS_CUDA
|
| 296 |
-
torch.cuda.empty_cache()
|
| 297 |
-
gc.collect()
|
| 298 |
|
| 299 |
# Set seed
|
| 300 |
if seed == -1:
|
|
@@ -303,165 +257,195 @@ def generate_video(
|
|
| 303 |
device = "cuda" if HAS_CUDA else "cpu"
|
| 304 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 305 |
|
| 306 |
-
|
|
|
|
|
|
|
| 307 |
start_time = time.time()
|
| 308 |
|
| 309 |
-
# Generate with autocast
|
| 310 |
with torch.autocast(device, dtype=MODEL_INFO["dtype"]):
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
num_frames
|
| 315 |
-
height
|
| 316 |
-
width
|
| 317 |
-
num_inference_steps
|
| 318 |
-
guidance_scale
|
| 319 |
-
generator
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
end_time = time.time()
|
| 323 |
generation_time = end_time - start_time
|
| 324 |
|
| 325 |
-
#
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
|
|
|
| 328 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
| 329 |
from diffusers.utils import export_to_video
|
| 330 |
-
|
|
|
|
| 331 |
video_path = tmp_file.name
|
| 332 |
|
| 333 |
-
#
|
| 334 |
-
if HAS_CUDA
|
| 335 |
-
|
| 336 |
-
gc.collect()
|
| 337 |
|
| 338 |
-
success_msg = f"""β
**H200 Video Generated!**
|
| 339 |
|
| 340 |
π€ **Model:** {MODEL_INFO['name']}
|
| 341 |
π **Prompt:** {prompt}
|
| 342 |
-
π¬ **Frames:** {num_frames}
|
| 343 |
π **Resolution:** {width}x{height}
|
| 344 |
βοΈ **Inference Steps:** {num_inference_steps}
|
| 345 |
-
π― **Guidance:** {guidance_scale}
|
| 346 |
π² **Seed:** {seed}
|
| 347 |
-
β±οΈ **Time:** {generation_time:.1f}s
|
| 348 |
-
π₯οΈ **Device:** H200
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
return video_path, success_msg
|
| 352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
except Exception as e:
|
| 354 |
if HAS_CUDA:
|
| 355 |
torch.cuda.empty_cache()
|
| 356 |
gc.collect()
|
| 357 |
-
return None, f"β
|
| 358 |
|
| 359 |
def get_loading_logs():
|
| 360 |
-
"""
|
| 361 |
global LOADING_LOGS
|
| 362 |
-
|
| 363 |
if not LOADING_LOGS:
|
| 364 |
-
return "No loading attempts yet.
|
| 365 |
-
|
| 366 |
return "\n".join(LOADING_LOGS)
|
| 367 |
|
| 368 |
-
def
|
| 369 |
-
"""
|
| 370 |
-
|
| 371 |
-
diagnostic = []
|
| 372 |
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
gpu_name = torch.cuda.get_device_name(0)
|
| 383 |
-
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
| 384 |
-
diagnostic.append(f"- GPU: {gpu_name}")
|
| 385 |
-
diagnostic.append(f"- Memory: {total_memory:.1f} GB")
|
| 386 |
-
except Exception as e:
|
| 387 |
-
diagnostic.append(f"- GPU Error: {e}")
|
| 388 |
-
|
| 389 |
-
# Package versions
|
| 390 |
-
try:
|
| 391 |
-
import diffusers
|
| 392 |
-
diagnostic.append(f"- Diffusers: {diffusers.__version__}")
|
| 393 |
-
except ImportError:
|
| 394 |
-
diagnostic.append("- Diffusers: β Not installed")
|
| 395 |
-
|
| 396 |
-
try:
|
| 397 |
-
import transformers
|
| 398 |
-
diagnostic.append(f"- Transformers: {transformers.__version__}")
|
| 399 |
-
except ImportError:
|
| 400 |
-
diagnostic.append("- Transformers: β Not installed")
|
| 401 |
-
|
| 402 |
-
# Available pipelines
|
| 403 |
-
available = check_available_pipelines()
|
| 404 |
-
diagnostic.append("\n## π Available Pipelines")
|
| 405 |
-
for pipeline, status in available.items():
|
| 406 |
-
diagnostic.append(f"- {pipeline}: {'β
' if status else 'β'}")
|
| 407 |
|
| 408 |
-
# Model status
|
| 409 |
-
diagnostic.append("\n## π€ Model Status")
|
| 410 |
if MODEL is not None:
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
|
|
|
|
|
|
|
|
|
| 414 |
else:
|
| 415 |
-
|
|
|
|
|
|
|
| 416 |
|
| 417 |
-
|
| 418 |
|
| 419 |
-
|
| 420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
global MODEL, MODEL_INFO
|
| 422 |
MODEL = None
|
| 423 |
MODEL_INFO = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
|
| 425 |
-
success
|
| 426 |
-
return f"π Force reload: {'β
Success' if success else 'β Failed'}"
|
| 427 |
|
| 428 |
-
# Create
|
| 429 |
-
with gr.Blocks(title="H200 Video Generator
|
| 430 |
|
| 431 |
gr.Markdown("""
|
| 432 |
-
#
|
| 433 |
|
| 434 |
-
**
|
| 435 |
""")
|
| 436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
with gr.Tab("π₯ Generate Video"):
|
| 438 |
with gr.Row():
|
| 439 |
with gr.Column(scale=1):
|
| 440 |
prompt_input = gr.Textbox(
|
| 441 |
label="π Video Prompt",
|
| 442 |
-
placeholder="A
|
| 443 |
-
lines=
|
| 444 |
)
|
| 445 |
|
| 446 |
negative_prompt_input = gr.Textbox(
|
| 447 |
label="π« Negative Prompt",
|
| 448 |
-
placeholder="blurry, low quality, distorted...",
|
| 449 |
lines=2
|
| 450 |
)
|
| 451 |
|
| 452 |
-
with gr.
|
| 453 |
-
|
| 454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
|
| 456 |
-
|
| 457 |
-
guidance_scale = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="π― Guidance")
|
| 458 |
-
seed = gr.Number(value=-1, precision=0, label="π² Seed")
|
| 459 |
|
| 460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
with gr.Column(scale=1):
|
| 463 |
-
video_output = gr.Video(label="π₯ Generated Video", height=400)
|
| 464 |
-
result_text = gr.Textbox(label="π
|
| 465 |
|
| 466 |
generate_btn.click(
|
| 467 |
fn=generate_video,
|
|
@@ -469,93 +453,52 @@ with gr.Blocks(title="H200 Video Generator - Debug Mode", theme=gr.themes.Soft()
|
|
| 469 |
outputs=[video_output, result_text]
|
| 470 |
)
|
| 471 |
|
| 472 |
-
#
|
| 473 |
gr.Examples(
|
| 474 |
examples=[
|
| 475 |
-
[
|
| 476 |
-
|
| 477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
],
|
| 479 |
inputs=[prompt_input, negative_prompt_input, num_frames, num_steps, guidance_scale, seed]
|
| 480 |
)
|
| 481 |
|
| 482 |
-
with gr.Tab("π§
|
| 483 |
with gr.Row():
|
| 484 |
-
|
| 485 |
-
logs_btn = gr.Button("π Loading Logs", variant="secondary")
|
| 486 |
-
reload_btn = gr.Button("π Force Reload
|
| 487 |
-
|
| 488 |
-
diagnostic_output = gr.Markdown()
|
| 489 |
-
logs_output = gr.Textbox(label="Loading Logs", lines=15, show_copy_button=True)
|
| 490 |
-
reload_output = gr.Textbox(label="Reload Result", lines=2)
|
| 491 |
-
|
| 492 |
-
diagnostic_btn.click(fn=get_system_diagnostic, outputs=diagnostic_output)
|
| 493 |
-
logs_btn.click(fn=get_loading_logs, outputs=logs_output)
|
| 494 |
-
reload_btn.click(fn=force_load_model, outputs=reload_output)
|
| 495 |
-
|
| 496 |
-
# Auto-load diagnostic
|
| 497 |
-
demo.load(fn=get_system_diagnostic, outputs=diagnostic_output)
|
| 498 |
-
|
| 499 |
-
with gr.Tab("π‘ Troubleshooting"):
|
| 500 |
-
gr.Markdown("""
|
| 501 |
-
## π§ H200 Troubleshooting Guide
|
| 502 |
-
|
| 503 |
-
### π¨ Common Issues & Solutions:
|
| 504 |
-
|
| 505 |
-
**β "All premium models failed to load"**
|
| 506 |
-
|
| 507 |
-
**Possible Causes:**
|
| 508 |
-
1. **Pipeline not available:** LTXVideoPipeline, HunyuanVideoPipeline may not be in stable diffusers
|
| 509 |
-
2. **Model access:** Some models may be gated or require authentication
|
| 510 |
-
3. **Memory issues:** Even H200 can have limits during loading
|
| 511 |
-
4. **Network timeouts:** Large model downloads can timeout
|
| 512 |
-
|
| 513 |
-
**Solutions:**
|
| 514 |
-
1. **Check System Diagnostic tab** - see what pipelines are available
|
| 515 |
-
2. **View Loading Logs** - detailed error messages
|
| 516 |
-
3. **Force Reload Model** - retry with fresh state
|
| 517 |
-
4. **Wait and retry** - sometimes it's just a temporary issue
|
| 518 |
-
|
| 519 |
-
### π― Step-by-Step Debugging:
|
| 520 |
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
- Check if diffusers/transformers are installed
|
| 525 |
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
**Step 3: Check Loading Logs**
|
| 531 |
-
- Click "Loading Logs" to see detailed attempt logs
|
| 532 |
-
- Look for specific error messages
|
| 533 |
-
- Note which models were tried
|
| 534 |
-
|
| 535 |
-
**Step 4: Force Reload**
|
| 536 |
-
- Click "Force Reload Model" if needed
|
| 537 |
-
- This clears cache and retries
|
| 538 |
-
|
| 539 |
-
### π Fallback Strategy:
|
| 540 |
-
|
| 541 |
-
This app tries models in this order:
|
| 542 |
-
1. **LTX-Video** (premium)
|
| 543 |
-
2. **HunyuanVideo** (premium)
|
| 544 |
-
3. **Zeroscope V2** (reliable fallback)
|
| 545 |
-
4. **ModelScope T2V** (backup)
|
| 546 |
-
5. **AliVilab T2V** (final fallback)
|
| 547 |
-
|
| 548 |
-
At least one should work!
|
| 549 |
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
- H200 has plenty of memory, so memory errors are rare
|
| 553 |
-
- Check HuggingFace status if all models fail
|
| 554 |
-
- Some models may need authentication tokens
|
| 555 |
-
""")
|
| 556 |
|
| 557 |
if __name__ == "__main__":
|
| 558 |
-
demo.queue(max_size=
|
| 559 |
demo.launch(
|
| 560 |
share=False,
|
| 561 |
server_name="0.0.0.0",
|
|
|
|
| 6 |
import tempfile
|
| 7 |
from typing import Optional, Tuple
|
| 8 |
import time
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# ZeroGPU support (even without detection)
|
| 11 |
try:
|
| 12 |
import spaces
|
| 13 |
SPACES_AVAILABLE = True
|
|
|
|
| 14 |
except ImportError:
|
| 15 |
SPACES_AVAILABLE = False
|
| 16 |
class spaces:
|
| 17 |
@staticmethod
|
| 18 |
+
def GPU(duration=240):
|
| 19 |
def decorator(func): return func
|
| 20 |
return decorator
|
| 21 |
|
| 22 |
+
# Environment
|
| 23 |
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
|
| 24 |
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
| 25 |
HAS_CUDA = torch.cuda.is_available()
|
| 26 |
|
| 27 |
+
print(f"π H200 MIG Environment: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}, CUDA={HAS_CUDA}")
|
| 28 |
|
| 29 |
+
# Working models based on your diagnostic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
WORKING_MODELS = [
|
| 31 |
+
{
|
| 32 |
+
"id": "Lightricks/LTX-Video",
|
| 33 |
+
"name": "LTX-Video",
|
| 34 |
+
"pipeline_class": "DiffusionPipeline",
|
| 35 |
+
"variant": None, # No fp16 variant available
|
| 36 |
+
"use_safetensors": False, # Use .bin files
|
| 37 |
+
"resolution": (512, 512),
|
| 38 |
+
"max_frames": 50,
|
| 39 |
+
"dtype": torch.bfloat16,
|
| 40 |
+
"priority": 1,
|
| 41 |
+
"description": "LTX-Video via DiffusionPipeline (no variant)"
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"id": "THUDM/CogVideoX-5b",
|
| 45 |
+
"name": "CogVideoX-5B",
|
| 46 |
+
"pipeline_class": "CogVideoXPipeline",
|
| 47 |
+
"variant": None,
|
| 48 |
+
"use_safetensors": True,
|
| 49 |
+
"resolution": (720, 480),
|
| 50 |
+
"max_frames": 49,
|
| 51 |
+
"dtype": torch.bfloat16,
|
| 52 |
+
"priority": 2,
|
| 53 |
+
"description": "CogVideo 5B model - proven to work"
|
| 54 |
+
},
|
| 55 |
{
|
| 56 |
"id": "cerspense/zeroscope_v2_576w",
|
| 57 |
"name": "Zeroscope V2",
|
| 58 |
+
"pipeline_class": "DiffusionPipeline",
|
| 59 |
+
"variant": None, # No fp16 variant
|
| 60 |
+
"use_safetensors": False, # Use .bin files
|
| 61 |
"resolution": (576, 320),
|
| 62 |
"max_frames": 24,
|
| 63 |
"dtype": torch.float16,
|
| 64 |
+
"priority": 3,
|
| 65 |
+
"description": "Zeroscope without safetensors"
|
| 66 |
},
|
| 67 |
{
|
| 68 |
"id": "damo-vilab/text-to-video-ms-1.7b",
|
| 69 |
"name": "ModelScope T2V",
|
| 70 |
+
"pipeline_class": "DiffusionPipeline",
|
| 71 |
+
"variant": None,
|
| 72 |
+
"use_safetensors": False,
|
| 73 |
"resolution": (256, 256),
|
| 74 |
+
"max_frames": 16,
|
| 75 |
"dtype": torch.float16,
|
| 76 |
+
"priority": 4,
|
| 77 |
+
"description": "ModelScope reliable fallback"
|
| 78 |
},
|
| 79 |
{
|
| 80 |
"id": "ali-vilab/text-to-video-ms-1.7b",
|
| 81 |
"name": "AliVilab T2V",
|
| 82 |
+
"pipeline_class": "DiffusionPipeline",
|
| 83 |
+
"variant": None,
|
| 84 |
+
"use_safetensors": False,
|
| 85 |
+
"resolution": (256, 256),
|
| 86 |
"max_frames": 16,
|
| 87 |
"dtype": torch.float16,
|
| 88 |
+
"priority": 5,
|
| 89 |
+
"description": "AliVilab alternative"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
}
|
| 91 |
]
|
| 92 |
|
|
|
|
| 96 |
LOADING_LOGS = []
|
| 97 |
|
| 98 |
def log_loading(message):
|
| 99 |
+
"""Enhanced logging"""
|
| 100 |
global LOADING_LOGS
|
| 101 |
print(message)
|
| 102 |
+
LOADING_LOGS.append(f"{time.strftime('%H:%M:%S')} - {message}")
|
| 103 |
+
|
| 104 |
+
def get_h200_memory():
|
| 105 |
+
"""Get H200 MIG memory stats"""
|
| 106 |
+
if HAS_CUDA:
|
| 107 |
+
try:
|
| 108 |
+
total = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
| 109 |
+
allocated = torch.cuda.memory_allocated(0) / (1024**3)
|
| 110 |
+
return total, allocated
|
| 111 |
+
except:
|
| 112 |
+
return 0, 0
|
| 113 |
+
return 0, 0
|
| 114 |
|
| 115 |
+
def load_working_model():
|
| 116 |
+
"""Load first working model with H200 MIG optimizations"""
|
| 117 |
global MODEL, MODEL_INFO, LOADING_LOGS
|
| 118 |
|
| 119 |
if MODEL is not None:
|
| 120 |
return True
|
| 121 |
|
| 122 |
LOADING_LOGS = []
|
| 123 |
+
log_loading("π H200 MIG (69.5GB) model loading started...")
|
| 124 |
|
| 125 |
+
total_mem, allocated_mem = get_h200_memory()
|
| 126 |
+
log_loading(f"πΎ Initial H200 memory: {total_mem:.1f}GB total, {allocated_mem:.1f}GB used")
|
|
|
|
| 127 |
|
| 128 |
+
# Sort by priority
|
| 129 |
+
sorted_models = sorted(WORKING_MODELS, key=lambda x: x["priority"])
|
|
|
|
| 130 |
|
| 131 |
+
for model_config in sorted_models:
|
| 132 |
+
if try_load_specific_model(model_config):
|
|
|
|
|
|
|
| 133 |
return True
|
| 134 |
|
| 135 |
+
log_loading("β All models failed on H200 MIG")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
return False
|
| 137 |
|
| 138 |
+
def try_load_specific_model(config):
|
| 139 |
+
"""Try loading a specific model with exact configuration"""
|
| 140 |
global MODEL, MODEL_INFO
|
| 141 |
|
| 142 |
+
model_id = config["id"]
|
| 143 |
+
model_name = config["name"]
|
| 144 |
|
| 145 |
+
log_loading(f"π Attempting {model_name}...")
|
| 146 |
+
log_loading(f" π Config: {config['pipeline_class']}, variant={config['variant']}, safetensors={config['use_safetensors']}")
|
| 147 |
|
| 148 |
try:
|
| 149 |
+
# Clear memory first
|
| 150 |
+
if HAS_CUDA:
|
| 151 |
+
torch.cuda.empty_cache()
|
| 152 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
# Import appropriate pipeline
|
| 155 |
+
if config["pipeline_class"] == "CogVideoXPipeline":
|
| 156 |
+
from diffusers import CogVideoXPipeline
|
| 157 |
+
PipelineClass = CogVideoXPipeline
|
| 158 |
else:
|
| 159 |
+
from diffusers import DiffusionPipeline
|
| 160 |
+
PipelineClass = DiffusionPipeline
|
| 161 |
+
|
| 162 |
+
# Prepare loading parameters
|
| 163 |
+
load_params = {
|
| 164 |
+
"torch_dtype": config["dtype"],
|
| 165 |
+
"trust_remote_code": True
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
# Add variant only if specified
|
| 169 |
+
if config["variant"]:
|
| 170 |
+
load_params["variant"] = config["variant"]
|
| 171 |
+
|
| 172 |
+
# Add safetensors setting
|
| 173 |
+
if config["use_safetensors"]:
|
| 174 |
+
load_params["use_safetensors"] = True
|
| 175 |
+
|
| 176 |
+
log_loading(f" π₯ Loading with params: {load_params}")
|
| 177 |
+
|
| 178 |
+
# Load model
|
| 179 |
+
pipe = PipelineClass.from_pretrained(model_id, **load_params)
|
| 180 |
+
|
| 181 |
+
# Move to H200 MIG GPU
|
| 182 |
if HAS_CUDA:
|
| 183 |
pipe = pipe.to("cuda")
|
| 184 |
+
log_loading(f" π± Moved to H200 MIG CUDA")
|
| 185 |
|
| 186 |
+
# H200 MIG optimizations (69.5GB is plenty!)
|
|
|
|
|
|
|
| 187 |
if hasattr(pipe, 'enable_vae_slicing'):
|
| 188 |
pipe.enable_vae_slicing()
|
| 189 |
+
log_loading(f" β‘ VAE slicing enabled")
|
| 190 |
+
|
| 191 |
if hasattr(pipe, 'enable_vae_tiling'):
|
| 192 |
pipe.enable_vae_tiling()
|
| 193 |
+
log_loading(f" β‘ VAE tiling enabled")
|
| 194 |
|
| 195 |
+
if hasattr(pipe, 'enable_memory_efficient_attention'):
|
| 196 |
+
pipe.enable_memory_efficient_attention()
|
| 197 |
+
log_loading(f" β‘ Memory efficient attention enabled")
|
| 198 |
|
| 199 |
+
# Don't use CPU offload on H200 - keep everything in GPU
|
| 200 |
+
log_loading(f" π Keeping model fully in H200 GPU memory")
|
| 201 |
+
|
| 202 |
+
# Memory check after loading
|
| 203 |
+
total_mem, allocated_mem = get_h200_memory()
|
| 204 |
+
log_loading(f" πΎ Post-load memory: {allocated_mem:.1f}GB used / {total_mem:.1f}GB total")
|
| 205 |
|
| 206 |
MODEL = pipe
|
| 207 |
+
MODEL_INFO = config
|
| 208 |
|
| 209 |
+
log_loading(f"β
{model_name} loaded successfully on H200 MIG!")
|
| 210 |
return True
|
| 211 |
|
| 212 |
except Exception as e:
|
| 213 |
log_loading(f"β {model_name} failed: {str(e)}")
|
| 214 |
+
# Clear memory before next attempt
|
| 215 |
if HAS_CUDA:
|
| 216 |
torch.cuda.empty_cache()
|
| 217 |
gc.collect()
|
| 218 |
return False
|
| 219 |
|
| 220 |
+
@spaces.GPU(duration=240) if SPACES_AVAILABLE else lambda x: x
|
| 221 |
def generate_video(
|
| 222 |
prompt: str,
|
| 223 |
negative_prompt: str = "",
|
| 224 |
+
num_frames: int = 25,
|
| 225 |
+
num_inference_steps: int = 25,
|
| 226 |
guidance_scale: float = 7.5,
|
| 227 |
seed: int = -1
|
| 228 |
) -> Tuple[Optional[str], str]:
|
| 229 |
+
"""Generate video with H200 MIG power"""
|
| 230 |
|
| 231 |
global MODEL, MODEL_INFO
|
| 232 |
|
| 233 |
# Load model if needed
|
| 234 |
+
if not load_working_model():
|
| 235 |
+
logs = "\n".join(LOADING_LOGS[-10:]) # Last 10 log entries
|
| 236 |
+
return None, f"β Model loading failed on H200 MIG\n\nRecent logs:\n{logs}"
|
| 237 |
|
| 238 |
# Input validation
|
| 239 |
if not prompt.strip():
|
|
|
|
| 243 |
max_frames = MODEL_INFO["max_frames"]
|
| 244 |
width, height = MODEL_INFO["resolution"]
|
| 245 |
|
| 246 |
+
# Adjust parameters for model
|
| 247 |
num_frames = min(max(num_frames, 8), max_frames)
|
| 248 |
|
| 249 |
try:
|
| 250 |
+
# H200 MIG memory management
|
| 251 |
+
start_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
|
|
|
|
|
|
|
| 252 |
|
| 253 |
# Set seed
|
| 254 |
if seed == -1:
|
|
|
|
| 257 |
device = "cuda" if HAS_CUDA else "cpu"
|
| 258 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 259 |
|
| 260 |
+
log_loading(f"π¬ H200 MIG Generation: {MODEL_INFO['name']}")
|
| 261 |
+
log_loading(f"π {width}x{height}, {num_frames} frames, {num_inference_steps} steps")
|
| 262 |
+
|
| 263 |
start_time = time.time()
|
| 264 |
|
| 265 |
+
# Generate with H200 MIG autocast
|
| 266 |
with torch.autocast(device, dtype=MODEL_INFO["dtype"]):
|
| 267 |
+
# Prepare generation arguments
|
| 268 |
+
gen_kwargs = {
|
| 269 |
+
"prompt": prompt,
|
| 270 |
+
"num_frames": num_frames,
|
| 271 |
+
"height": height,
|
| 272 |
+
"width": width,
|
| 273 |
+
"num_inference_steps": num_inference_steps,
|
| 274 |
+
"guidance_scale": guidance_scale,
|
| 275 |
+
"generator": generator
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
# Add negative prompt if provided
|
| 279 |
+
if negative_prompt.strip():
|
| 280 |
+
gen_kwargs["negative_prompt"] = negative_prompt
|
| 281 |
+
|
| 282 |
+
# Model-specific adjustments
|
| 283 |
+
if MODEL_INFO["name"] == "CogVideoX-5B":
|
| 284 |
+
gen_kwargs["num_videos_per_prompt"] = 1
|
| 285 |
+
|
| 286 |
+
log_loading(f"π Starting H200 MIG generation...")
|
| 287 |
+
result = MODEL(**gen_kwargs)
|
| 288 |
|
| 289 |
end_time = time.time()
|
| 290 |
generation_time = end_time - start_time
|
| 291 |
|
| 292 |
+
# Extract video frames
|
| 293 |
+
if hasattr(result, 'frames'):
|
| 294 |
+
video_frames = result.frames[0]
|
| 295 |
+
elif hasattr(result, 'videos'):
|
| 296 |
+
video_frames = result.videos[0]
|
| 297 |
+
else:
|
| 298 |
+
return None, "β Could not extract video frames"
|
| 299 |
|
| 300 |
+
# Export video
|
| 301 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
| 302 |
from diffusers.utils import export_to_video
|
| 303 |
+
fps = 8
|
| 304 |
+
export_to_video(video_frames, tmp_file.name, fps=fps)
|
| 305 |
video_path = tmp_file.name
|
| 306 |
|
| 307 |
+
# Memory stats
|
| 308 |
+
end_memory = torch.cuda.memory_allocated(0) / (1024**3) if HAS_CUDA else 0
|
| 309 |
+
memory_used = end_memory - start_memory
|
|
|
|
| 310 |
|
| 311 |
+
success_msg = f"""β
**H200 MIG Video Generated!**
|
| 312 |
|
| 313 |
π€ **Model:** {MODEL_INFO['name']}
|
| 314 |
π **Prompt:** {prompt}
|
| 315 |
+
π¬ **Frames:** {num_frames} @ {fps} FPS
|
| 316 |
π **Resolution:** {width}x{height}
|
| 317 |
βοΈ **Inference Steps:** {num_inference_steps}
|
| 318 |
+
π― **Guidance Scale:** {guidance_scale}
|
| 319 |
π² **Seed:** {seed}
|
| 320 |
+
β±οΈ **Generation Time:** {generation_time:.1f}s
|
| 321 |
+
π₯οΈ **Device:** H200 MIG (69.5GB)
|
| 322 |
+
πΎ **Memory Used:** {memory_used:.1f}GB
|
| 323 |
+
π₯ **Video Length:** {num_frames/fps:.1f}s
|
| 324 |
+
π **Notes:** {MODEL_INFO['description']}"""
|
| 325 |
+
|
| 326 |
+
log_loading(f"β
Generation completed in {generation_time:.1f}s")
|
| 327 |
|
| 328 |
return video_path, success_msg
|
| 329 |
|
| 330 |
+
except torch.cuda.OutOfMemoryError:
|
| 331 |
+
torch.cuda.empty_cache()
|
| 332 |
+
gc.collect()
|
| 333 |
+
return None, "β H200 MIG memory exceeded (rare!). Try reducing parameters."
|
| 334 |
+
|
| 335 |
except Exception as e:
|
| 336 |
if HAS_CUDA:
|
| 337 |
torch.cuda.empty_cache()
|
| 338 |
gc.collect()
|
| 339 |
+
return None, f"β H200 MIG generation failed: {str(e)}"
|
| 340 |
|
| 341 |
def get_loading_logs():
|
| 342 |
+
"""Return formatted loading logs"""
|
| 343 |
global LOADING_LOGS
|
|
|
|
| 344 |
if not LOADING_LOGS:
|
| 345 |
+
return "No loading attempts yet."
|
|
|
|
| 346 |
return "\n".join(LOADING_LOGS)
|
| 347 |
|
| 348 |
+
def get_h200_status():
|
| 349 |
+
"""Get H200 MIG specific status"""
|
| 350 |
+
total_mem, allocated_mem = get_h200_memory()
|
|
|
|
| 351 |
|
| 352 |
+
status = f"""## π H200 MIG Status
|
| 353 |
+
|
| 354 |
+
**π₯οΈ Hardware:**
|
| 355 |
+
- GPU: NVIDIA H200 MIG 3g.71gb
|
| 356 |
+
- Total Memory: {total_mem:.1f} GB
|
| 357 |
+
- Allocated: {allocated_mem:.1f} GB
|
| 358 |
+
- Free: {total_mem - allocated_mem:.1f} GB
|
| 359 |
+
|
| 360 |
+
**π€ Current Model:**"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
|
|
|
|
|
|
| 362 |
if MODEL is not None:
|
| 363 |
+
status += f"""
|
| 364 |
+
- β
**{MODEL_INFO['name']}** loaded and ready
|
| 365 |
+
- π Resolution: {MODEL_INFO['resolution']}
|
| 366 |
+
- π¬ Max Frames: {MODEL_INFO['max_frames']}
|
| 367 |
+
- πΎ Memory Usage: {allocated_mem:.1f}GB
|
| 368 |
+
- π Details: {MODEL_INFO['description']}"""
|
| 369 |
else:
|
| 370 |
+
status += f"""
|
| 371 |
+
- β³ No model loaded yet
|
| 372 |
+
- π Will auto-load on first generation"""
|
| 373 |
|
| 374 |
+
status += f"""
|
| 375 |
|
| 376 |
+
**π‘ H200 MIG Advantages:**
|
| 377 |
+
- 69.5GB dedicated memory
|
| 378 |
+
- Isolated GPU partition
|
| 379 |
+
- Consistent performance
|
| 380 |
+
- No interference from other workloads"""
|
| 381 |
+
|
| 382 |
+
return status
|
| 383 |
+
|
| 384 |
+
def force_reload():
|
| 385 |
+
"""Force model reload"""
|
| 386 |
global MODEL, MODEL_INFO
|
| 387 |
MODEL = None
|
| 388 |
MODEL_INFO = None
|
| 389 |
+
torch.cuda.empty_cache()
|
| 390 |
+
gc.collect()
|
| 391 |
+
|
| 392 |
+
success = load_working_model()
|
| 393 |
+
logs = "\n".join(LOADING_LOGS[-5:]) # Last 5 entries
|
| 394 |
|
| 395 |
+
return f"π **Force Reload Result:** {'β
Success' if success else 'β Failed'}\n\nRecent logs:\n{logs}"
|
|
|
|
| 396 |
|
| 397 |
+
# Create H200 MIG optimized interface
|
| 398 |
+
with gr.Blocks(title="H200 MIG Video Generator", theme=gr.themes.Glass()) as demo:
|
| 399 |
|
| 400 |
gr.Markdown("""
|
| 401 |
+
# π H200 MIG Video Generator
|
| 402 |
|
| 403 |
+
**NVIDIA H200 MIG 3g.71gb** β’ **69.5GB Memory** β’ **Working Models**
|
| 404 |
""")
|
| 405 |
|
| 406 |
+
# Status bar
|
| 407 |
+
with gr.Row():
|
| 408 |
+
gr.Markdown("""
|
| 409 |
+
<div style="background: linear-gradient(45deg, #FF6B6B, #4ECDC4); padding: 10px; border-radius: 10px; text-align: center; color: white; font-weight: bold;">
|
| 410 |
+
π₯ H200 MIG ACTIVE - OPTIMIZED FOR YOUR SETUP π₯
|
| 411 |
+
</div>
|
| 412 |
+
""")
|
| 413 |
+
|
| 414 |
with gr.Tab("π₯ Generate Video"):
|
| 415 |
with gr.Row():
|
| 416 |
with gr.Column(scale=1):
|
| 417 |
prompt_input = gr.Textbox(
|
| 418 |
label="π Video Prompt",
|
| 419 |
+
placeholder="A majestic eagle soaring through mountain peaks at golden hour, cinematic shot with dramatic lighting...",
|
| 420 |
+
lines=4
|
| 421 |
)
|
| 422 |
|
| 423 |
negative_prompt_input = gr.Textbox(
|
| 424 |
label="π« Negative Prompt",
|
| 425 |
+
placeholder="blurry, low quality, distorted, pixelated, static...",
|
| 426 |
lines=2
|
| 427 |
)
|
| 428 |
|
| 429 |
+
with gr.Accordion("βοΈ H200 MIG Settings", open=True):
|
| 430 |
+
with gr.Row():
|
| 431 |
+
num_frames = gr.Slider(8, 50, value=25, step=1, label="π¬ Frames")
|
| 432 |
+
num_steps = gr.Slider(15, 50, value=25, step=1, label="βοΈ Steps")
|
| 433 |
+
|
| 434 |
+
with gr.Row():
|
| 435 |
+
guidance_scale = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="π― Guidance")
|
| 436 |
+
seed = gr.Number(value=-1, precision=0, label="π² Seed")
|
| 437 |
|
| 438 |
+
generate_btn = gr.Button("π Generate on H200 MIG", variant="primary", size="lg")
|
|
|
|
|
|
|
| 439 |
|
| 440 |
+
gr.Markdown("""
|
| 441 |
+
**β±οΈ Generation:** 1-3 minutes on H200 MIG
|
| 442 |
+
|
| 443 |
+
**π‘ Auto-detects:** Best working model for your setup
|
| 444 |
+
""")
|
| 445 |
|
| 446 |
with gr.Column(scale=1):
|
| 447 |
+
video_output = gr.Video(label="π₯ H200 MIG Generated Video", height=400)
|
| 448 |
+
result_text = gr.Textbox(label="π Generation Report", lines=10, show_copy_button=True)
|
| 449 |
|
| 450 |
generate_btn.click(
|
| 451 |
fn=generate_video,
|
|
|
|
| 453 |
outputs=[video_output, result_text]
|
| 454 |
)
|
| 455 |
|
| 456 |
+
# H200 MIG optimized examples
|
| 457 |
gr.Examples(
|
| 458 |
examples=[
|
| 459 |
+
[
|
| 460 |
+
"A majestic golden eagle soaring through misty mountain peaks at sunrise",
|
| 461 |
+
"blurry, low quality, static",
|
| 462 |
+
25, 25, 7.5, 42
|
| 463 |
+
],
|
| 464 |
+
[
|
| 465 |
+
"Ocean waves crashing against rocks during sunset, cinematic view",
|
| 466 |
+
"pixelated, distorted, watermark",
|
| 467 |
+
30, 30, 8.0, 123
|
| 468 |
+
],
|
| 469 |
+
[
|
| 470 |
+
"A peaceful cat sleeping in a sunny garden with flowers",
|
| 471 |
+
"dark, gloomy, low quality",
|
| 472 |
+
20, 20, 7.0, 456
|
| 473 |
+
],
|
| 474 |
+
[
|
| 475 |
+
"Time-lapse of clouds moving over a mountain landscape",
|
| 476 |
+
"static, boring, blurry",
|
| 477 |
+
35, 35, 7.5, 789
|
| 478 |
+
]
|
| 479 |
],
|
| 480 |
inputs=[prompt_input, negative_prompt_input, num_frames, num_steps, guidance_scale, seed]
|
| 481 |
)
|
| 482 |
|
| 483 |
+
with gr.Tab("π§ H200 MIG Status"):
|
| 484 |
with gr.Row():
|
| 485 |
+
status_btn = gr.Button("π Check H200 Status", variant="secondary")
|
| 486 |
+
logs_btn = gr.Button("π View Loading Logs", variant="secondary")
|
| 487 |
+
reload_btn = gr.Button("π Force Reload", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 488 |
|
| 489 |
+
status_output = gr.Markdown()
|
| 490 |
+
logs_output = gr.Textbox(label="Detailed Loading Logs", lines=15, show_copy_button=True)
|
| 491 |
+
reload_output = gr.Markdown()
|
|
|
|
| 492 |
|
| 493 |
+
status_btn.click(fn=get_h200_status, outputs=status_output)
|
| 494 |
+
logs_btn.click(fn=get_loading_logs, outputs=logs_output)
|
| 495 |
+
reload_btn.click(fn=force_reload, outputs=reload_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
|
| 497 |
+
# Auto-load status
|
| 498 |
+
demo.load(fn=get_h200_status, outputs=status_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
if __name__ == "__main__":
|
| 501 |
+
demo.queue(max_size=3)
|
| 502 |
demo.launch(
|
| 503 |
share=False,
|
| 504 |
server_name="0.0.0.0",
|