Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,361 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import gc
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import tempfile
|
8 |
+
from typing import Optional, Tuple
|
9 |
+
import time
|
10 |
|
11 |
+
# Check if we're running on Hugging Face Spaces
|
12 |
+
IS_SPACES = os.environ.get("SPACE_ID") is not None
|
13 |
+
|
14 |
+
def check_system():
|
15 |
+
"""Check system capabilities"""
|
16 |
+
gpu_available = torch.cuda.is_available()
|
17 |
+
gpu_memory = 0
|
18 |
+
if gpu_available:
|
19 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
20 |
+
|
21 |
+
return {
|
22 |
+
"gpu_available": gpu_available,
|
23 |
+
"gpu_memory": gpu_memory,
|
24 |
+
"is_spaces": IS_SPACES
|
25 |
+
}
|
26 |
+
|
27 |
+
def load_ltx_model():
|
28 |
+
"""Load LTX-Video model with optimizations for HF Spaces"""
|
29 |
+
try:
|
30 |
+
from diffusers import LTXVideoPipeline
|
31 |
+
from diffusers.utils import export_to_video
|
32 |
+
|
33 |
+
system_info = check_system()
|
34 |
+
|
35 |
+
# Model loading strategy based on available resources
|
36 |
+
model_id = "Lightricks/LTX-Video"
|
37 |
+
|
38 |
+
if system_info["gpu_available"] and system_info["gpu_memory"] > 12:
|
39 |
+
# High-end GPU setup
|
40 |
+
pipe = LTXVideoPipeline.from_pretrained(
|
41 |
+
model_id,
|
42 |
+
torch_dtype=torch.bfloat16,
|
43 |
+
variant="fp16"
|
44 |
+
).to("cuda")
|
45 |
+
device = "cuda"
|
46 |
+
dtype = torch.bfloat16
|
47 |
+
elif system_info["gpu_available"] and system_info["gpu_memory"] > 6:
|
48 |
+
# Mid-range GPU setup with optimizations
|
49 |
+
pipe = LTXVideoPipeline.from_pretrained(
|
50 |
+
model_id,
|
51 |
+
torch_dtype=torch.float16,
|
52 |
+
variant="fp16",
|
53 |
+
low_cpu_mem_usage=True
|
54 |
+
).to("cuda")
|
55 |
+
device = "cuda"
|
56 |
+
dtype = torch.float16
|
57 |
+
else:
|
58 |
+
# CPU fallback or low memory GPU
|
59 |
+
pipe = LTXVideoPipeline.from_pretrained(
|
60 |
+
model_id,
|
61 |
+
torch_dtype=torch.float32,
|
62 |
+
low_cpu_mem_usage=True
|
63 |
+
)
|
64 |
+
device = "cpu"
|
65 |
+
dtype = torch.float32
|
66 |
+
|
67 |
+
# Enable memory efficient attention if available
|
68 |
+
if hasattr(pipe, "enable_memory_efficient_attention"):
|
69 |
+
pipe.enable_memory_efficient_attention()
|
70 |
+
|
71 |
+
# Enable CPU offload for low memory setups
|
72 |
+
if system_info["gpu_memory"] < 16 and device == "cuda":
|
73 |
+
pipe.enable_sequential_cpu_offload()
|
74 |
+
|
75 |
+
return pipe, device, dtype, system_info
|
76 |
+
|
77 |
+
except ImportError:
|
78 |
+
return None, "cpu", torch.float32, {"error": "diffusers library not installed or LTX model not available"}
|
79 |
+
except Exception as e:
|
80 |
+
return None, "cpu", torch.float32, {"error": f"Model loading failed: {str(e)}"}
|
81 |
+
|
82 |
+
# Initialize model
|
83 |
+
print("Loading LTX-Video model...")
|
84 |
+
PIPE, DEVICE, DTYPE, SYSTEM_INFO = load_ltx_model()
|
85 |
+
|
86 |
+
def generate_video(
|
87 |
+
prompt: str,
|
88 |
+
negative_prompt: str = "",
|
89 |
+
num_frames: int = 25,
|
90 |
+
height: int = 512,
|
91 |
+
width: int = 512,
|
92 |
+
num_inference_steps: int = 20,
|
93 |
+
guidance_scale: float = 7.5,
|
94 |
+
seed: int = -1
|
95 |
+
) -> Tuple[Optional[str], str]:
|
96 |
+
"""Generate video using LTX-Video model"""
|
97 |
+
|
98 |
+
if PIPE is None:
|
99 |
+
error_msg = f"β Model not loaded: {SYSTEM_INFO.get('error', 'Unknown error')}"
|
100 |
+
return None, error_msg
|
101 |
+
|
102 |
+
# Input validation
|
103 |
+
if not prompt.strip():
|
104 |
+
return None, "β Please enter a valid prompt."
|
105 |
+
|
106 |
+
if len(prompt) > 500:
|
107 |
+
return None, "β Prompt too long. Please keep it under 500 characters."
|
108 |
+
|
109 |
+
# Adjust parameters based on system capabilities
|
110 |
+
if DEVICE == "cpu":
|
111 |
+
num_frames = min(num_frames, 16) # Limit frames for CPU
|
112 |
+
num_inference_steps = min(num_inference_steps, 15)
|
113 |
+
height = min(height, 256)
|
114 |
+
width = min(width, 256)
|
115 |
+
elif SYSTEM_INFO.get("gpu_memory", 0) < 8:
|
116 |
+
num_frames = min(num_frames, 20)
|
117 |
+
height = min(height, 512)
|
118 |
+
width = min(width, 512)
|
119 |
+
|
120 |
+
try:
|
121 |
+
# Clear cache
|
122 |
+
if DEVICE == "cuda":
|
123 |
+
torch.cuda.empty_cache()
|
124 |
+
gc.collect()
|
125 |
+
|
126 |
+
# Set seed for reproducibility
|
127 |
+
generator = None
|
128 |
+
if seed != -1:
|
129 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
130 |
+
else:
|
131 |
+
seed = np.random.randint(0, 2**32 - 1)
|
132 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
133 |
+
|
134 |
+
start_time = time.time()
|
135 |
+
|
136 |
+
# Generate video
|
137 |
+
with torch.autocast(DEVICE, dtype=DTYPE):
|
138 |
+
result = PIPE(
|
139 |
+
prompt=prompt,
|
140 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
141 |
+
num_frames=num_frames,
|
142 |
+
height=height,
|
143 |
+
width=width,
|
144 |
+
num_inference_steps=num_inference_steps,
|
145 |
+
guidance_scale=guidance_scale,
|
146 |
+
generator=generator
|
147 |
+
)
|
148 |
+
|
149 |
+
end_time = time.time()
|
150 |
+
generation_time = end_time - start_time
|
151 |
+
|
152 |
+
# Save video to temporary file
|
153 |
+
video_frames = result.frames[0]
|
154 |
+
|
155 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
156 |
+
# Convert frames to video
|
157 |
+
from diffusers.utils import export_to_video
|
158 |
+
export_to_video(video_frames, tmp_file.name, fps=8)
|
159 |
+
video_path = tmp_file.name
|
160 |
+
|
161 |
+
success_msg = f"""
|
162 |
+
β
Video generated successfully!
|
163 |
+
|
164 |
+
π Prompt: {prompt}
|
165 |
+
π¬ Frames: {num_frames}
|
166 |
+
π Resolution: {width}x{height}
|
167 |
+
βοΈ Steps: {num_inference_steps}
|
168 |
+
π― Guidance: {guidance_scale}
|
169 |
+
π² Seed: {seed}
|
170 |
+
β±οΈ Generation Time: {generation_time:.1f}s
|
171 |
+
π₯οΈ Device: {DEVICE}
|
172 |
+
"""
|
173 |
+
|
174 |
+
return video_path, success_msg
|
175 |
+
|
176 |
+
except torch.cuda.OutOfMemoryError:
|
177 |
+
return None, "β GPU memory exceeded. Try reducing resolution, frames, or inference steps."
|
178 |
+
except Exception as e:
|
179 |
+
return None, f"β Generation failed: {str(e)}"
|
180 |
+
|
181 |
+
def get_system_info():
|
182 |
+
"""Get detailed system information"""
|
183 |
+
info = f"""
|
184 |
+
## π₯οΈ System Information
|
185 |
+
|
186 |
+
**Hardware:**
|
187 |
+
- GPU Available: {'β
' if SYSTEM_INFO.get('gpu_available', False) else 'β'}
|
188 |
+
- GPU Memory: {SYSTEM_INFO.get('gpu_memory', 0):.1f} GB
|
189 |
+
- Device: {DEVICE}
|
190 |
+
- Data Type: {DTYPE}
|
191 |
+
|
192 |
+
**Environment:**
|
193 |
+
- Hugging Face Spaces: {'β
' if IS_SPACES else 'β'}
|
194 |
+
- PyTorch Version: {torch.__version__}
|
195 |
+
|
196 |
+
**Model Status:**
|
197 |
+
- LTX-Video Loaded: {'β
' if PIPE is not None else 'β'}
|
198 |
+
"""
|
199 |
+
|
200 |
+
if "error" in SYSTEM_INFO:
|
201 |
+
info += f"\n**Error:** {SYSTEM_INFO['error']}"
|
202 |
+
|
203 |
+
return info
|
204 |
+
|
205 |
+
# Create Gradio interface
|
206 |
+
with gr.Blocks(title="LTX-Video Generator", theme=gr.themes.Soft()) as demo:
|
207 |
+
|
208 |
+
gr.Markdown("""
|
209 |
+
# π¬ LTX-Video Generator by Lightricks
|
210 |
+
|
211 |
+
Generate high-quality videos from text descriptions using the LTX-Video model.
|
212 |
+
""")
|
213 |
+
|
214 |
+
with gr.Tab("π₯ Generate Video"):
|
215 |
+
with gr.Row():
|
216 |
+
with gr.Column(scale=1):
|
217 |
+
prompt_input = gr.Textbox(
|
218 |
+
label="π Video Prompt",
|
219 |
+
placeholder="A serene lake surrounded by mountains at sunset...",
|
220 |
+
lines=3,
|
221 |
+
max_lines=5
|
222 |
+
)
|
223 |
+
|
224 |
+
negative_prompt_input = gr.Textbox(
|
225 |
+
label="π« Negative Prompt (Optional)",
|
226 |
+
placeholder="blurry, low quality, distorted...",
|
227 |
+
lines=2
|
228 |
+
)
|
229 |
+
|
230 |
+
with gr.Row():
|
231 |
+
num_frames = gr.Slider(
|
232 |
+
minimum=8,
|
233 |
+
maximum=50,
|
234 |
+
value=25,
|
235 |
+
step=1,
|
236 |
+
label="π¬ Number of Frames"
|
237 |
+
)
|
238 |
+
|
239 |
+
num_steps = gr.Slider(
|
240 |
+
minimum=10,
|
241 |
+
maximum=50,
|
242 |
+
value=20,
|
243 |
+
step=1,
|
244 |
+
label="βοΈ Inference Steps"
|
245 |
+
)
|
246 |
+
|
247 |
+
with gr.Row():
|
248 |
+
width = gr.Dropdown(
|
249 |
+
choices=[256, 512, 768, 1024],
|
250 |
+
value=512,
|
251 |
+
label="π Width"
|
252 |
+
)
|
253 |
+
|
254 |
+
height = gr.Dropdown(
|
255 |
+
choices=[256, 512, 768, 1024],
|
256 |
+
value=512,
|
257 |
+
label="π Height"
|
258 |
+
)
|
259 |
+
|
260 |
+
with gr.Row():
|
261 |
+
guidance_scale = gr.Slider(
|
262 |
+
minimum=1.0,
|
263 |
+
maximum=20.0,
|
264 |
+
value=7.5,
|
265 |
+
step=0.5,
|
266 |
+
label="π― Guidance Scale"
|
267 |
+
)
|
268 |
+
|
269 |
+
seed = gr.Number(
|
270 |
+
label="π² Seed (-1 for random)",
|
271 |
+
value=-1,
|
272 |
+
precision=0
|
273 |
+
)
|
274 |
+
|
275 |
+
generate_btn = gr.Button("π¬ Generate Video", variant="primary", size="lg")
|
276 |
+
|
277 |
+
with gr.Column(scale=1):
|
278 |
+
video_output = gr.Video(
|
279 |
+
label="π₯ Generated Video",
|
280 |
+
height=400
|
281 |
+
)
|
282 |
+
|
283 |
+
result_text = gr.Textbox(
|
284 |
+
label="π Generation Info",
|
285 |
+
lines=8,
|
286 |
+
show_copy_button=True
|
287 |
+
)
|
288 |
+
|
289 |
+
# Event handler
|
290 |
+
generate_btn.click(
|
291 |
+
fn=generate_video,
|
292 |
+
inputs=[
|
293 |
+
prompt_input, negative_prompt_input, num_frames,
|
294 |
+
height, width, num_steps, guidance_scale, seed
|
295 |
+
],
|
296 |
+
outputs=[video_output, result_text]
|
297 |
+
)
|
298 |
+
|
299 |
+
# Example prompts
|
300 |
+
gr.Examples(
|
301 |
+
examples=[
|
302 |
+
["A majestic waterfall cascading down rocky cliffs", "", 25, 512, 512, 20, 7.5, 42],
|
303 |
+
["A cute kitten playing with colorful yarn balls", "blurry, low quality", 20, 512, 512, 20, 8.0, 123],
|
304 |
+
["Time-lapse of clouds moving over a city skyline", "", 30, 768, 512, 25, 7.0, 456],
|
305 |
+
["A peaceful forest with sunlight filtering through trees", "dark, gloomy", 25, 512, 768, 20, 7.5, 789]
|
306 |
+
],
|
307 |
+
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
|
308 |
+
)
|
309 |
+
|
310 |
+
with gr.Tab("βΉοΈ System Info"):
|
311 |
+
with gr.Row():
|
312 |
+
info_btn = gr.Button("π Check System Status", variant="secondary")
|
313 |
+
|
314 |
+
system_output = gr.Markdown()
|
315 |
+
|
316 |
+
info_btn.click(
|
317 |
+
fn=get_system_info,
|
318 |
+
outputs=system_output
|
319 |
+
)
|
320 |
+
|
321 |
+
# Initial system info display
|
322 |
+
demo.load(
|
323 |
+
fn=get_system_info,
|
324 |
+
outputs=system_output
|
325 |
+
)
|
326 |
+
|
327 |
+
with gr.Tab("π Usage Tips"):
|
328 |
+
gr.Markdown("""
|
329 |
+
## π‘ Tips for Better Results
|
330 |
+
|
331 |
+
**Prompt Writing:**
|
332 |
+
- Be descriptive and specific
|
333 |
+
- Include camera movements (zoom, pan, etc.)
|
334 |
+
- Specify lighting and mood
|
335 |
+
- Mention style if desired (cinematic, artistic, etc.)
|
336 |
+
|
337 |
+
**Parameter Tuning:**
|
338 |
+
- **Frames:** More frames = longer video but slower generation
|
339 |
+
- **Inference Steps:** Higher steps = better quality but slower
|
340 |
+
- **Guidance Scale:** 7-9 usually works best
|
341 |
+
- **Resolution:** Start with 512x512 for faster results
|
342 |
+
|
343 |
+
**Performance:**
|
344 |
+
- CPU generation is slower but works on all systems
|
345 |
+
- GPU generation requires sufficient VRAM
|
346 |
+
- Lower settings if you encounter memory errors
|
347 |
+
|
348 |
+
**Negative Prompts:** Help avoid unwanted elements
|
349 |
+
- Common: "blurry, low quality, distorted, pixelated"
|
350 |
+
- Specific: "text, watermark, signature, logo"
|
351 |
+
""")
|
352 |
+
|
353 |
+
# Launch configuration
|
354 |
+
if __name__ == "__main__":
|
355 |
+
demo.launch(
|
356 |
+
share=False,
|
357 |
+
server_name="0.0.0.0",
|
358 |
+
server_port=7860,
|
359 |
+
show_error=True,
|
360 |
+
show_api=False
|
361 |
+
)
|