Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clémentine
commited on
Commit
·
12cea14
1
Parent(s):
99b25b8
FT: precision and adapter models
Browse files
app.py
CHANGED
|
@@ -28,7 +28,6 @@ PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
|
|
| 28 |
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
|
| 29 |
|
| 30 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
| 31 |
-
ADD_PLOTS = False
|
| 32 |
|
| 33 |
EVAL_REQUESTS_PATH = "eval-queue"
|
| 34 |
EVAL_RESULTS_PATH = "eval-results"
|
|
@@ -56,8 +55,8 @@ COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default an
|
|
| 56 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 57 |
|
| 58 |
if not IS_PUBLIC:
|
| 59 |
-
COLS.insert(2, AutoEvalColumn.
|
| 60 |
-
TYPES.insert(2, AutoEvalColumn.
|
| 61 |
|
| 62 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
| 63 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
|
@@ -177,25 +176,27 @@ def add_new_eval(
|
|
| 177 |
model: str,
|
| 178 |
base_model: str,
|
| 179 |
revision: str,
|
| 180 |
-
|
| 181 |
private: bool,
|
| 182 |
-
|
| 183 |
):
|
|
|
|
| 184 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
| 185 |
|
| 186 |
# check the model actually exists before adding the eval
|
| 187 |
if revision == "":
|
| 188 |
revision = "main"
|
| 189 |
|
| 190 |
-
if
|
| 191 |
base_model_on_hub, error = is_model_on_hub(base_model, revision)
|
| 192 |
if not base_model_on_hub:
|
| 193 |
return styled_error(f'Base model "{base_model}" {error}')
|
|
|
|
| 194 |
|
| 195 |
model_on_hub, error = is_model_on_hub(model, revision)
|
| 196 |
if not model_on_hub:
|
| 197 |
return styled_error(f'Model "{model}" {error}')
|
| 198 |
-
|
| 199 |
print("adding new eval")
|
| 200 |
|
| 201 |
eval_entry = {
|
|
@@ -203,8 +204,8 @@ def add_new_eval(
|
|
| 203 |
"base_model": base_model,
|
| 204 |
"revision": revision,
|
| 205 |
"private": private,
|
| 206 |
-
"
|
| 207 |
-
"
|
| 208 |
"status": "PENDING",
|
| 209 |
"submitted_time": current_time,
|
| 210 |
}
|
|
@@ -217,7 +218,7 @@ def add_new_eval(
|
|
| 217 |
|
| 218 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
| 219 |
os.makedirs(OUT_DIR, exist_ok=True)
|
| 220 |
-
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{
|
| 221 |
|
| 222 |
# Check for duplicate submission
|
| 223 |
if out_path.split("eval-queue/")[1].lower() in requested_models:
|
|
@@ -381,17 +382,29 @@ with demo:
|
|
| 381 |
revision_name_textbox = gr.Textbox(
|
| 382 |
label="revision", placeholder="main"
|
| 383 |
)
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
with gr.Column():
|
| 386 |
-
|
| 387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
)
|
| 389 |
-
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
)
|
| 392 |
-
is_delta_weight = gr.Checkbox(False, label="Delta weights")
|
| 393 |
base_model_name_textbox = gr.Textbox(
|
| 394 |
-
label="
|
| 395 |
)
|
| 396 |
|
| 397 |
submit_button = gr.Button("Submit Eval")
|
|
@@ -402,9 +415,9 @@ with demo:
|
|
| 402 |
model_name_textbox,
|
| 403 |
base_model_name_textbox,
|
| 404 |
revision_name_textbox,
|
| 405 |
-
|
| 406 |
private,
|
| 407 |
-
|
| 408 |
],
|
| 409 |
submission_result,
|
| 410 |
)
|
|
|
|
| 28 |
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
|
| 29 |
|
| 30 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
|
|
|
| 31 |
|
| 32 |
EVAL_REQUESTS_PATH = "eval-queue"
|
| 33 |
EVAL_RESULTS_PATH = "eval-results"
|
|
|
|
| 55 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 56 |
|
| 57 |
if not IS_PUBLIC:
|
| 58 |
+
COLS.insert(2, AutoEvalColumn.precision.name)
|
| 59 |
+
TYPES.insert(2, AutoEvalColumn.precision.type)
|
| 60 |
|
| 61 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
| 62 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
|
|
|
| 176 |
model: str,
|
| 177 |
base_model: str,
|
| 178 |
revision: str,
|
| 179 |
+
precision: str,
|
| 180 |
private: bool,
|
| 181 |
+
weight_type: str,
|
| 182 |
):
|
| 183 |
+
precision = precision.split(" ")[0]
|
| 184 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
| 185 |
|
| 186 |
# check the model actually exists before adding the eval
|
| 187 |
if revision == "":
|
| 188 |
revision = "main"
|
| 189 |
|
| 190 |
+
if weight_type in ["Delta", "Adapter"]:
|
| 191 |
base_model_on_hub, error = is_model_on_hub(base_model, revision)
|
| 192 |
if not base_model_on_hub:
|
| 193 |
return styled_error(f'Base model "{base_model}" {error}')
|
| 194 |
+
|
| 195 |
|
| 196 |
model_on_hub, error = is_model_on_hub(model, revision)
|
| 197 |
if not model_on_hub:
|
| 198 |
return styled_error(f'Model "{model}" {error}')
|
| 199 |
+
|
| 200 |
print("adding new eval")
|
| 201 |
|
| 202 |
eval_entry = {
|
|
|
|
| 204 |
"base_model": base_model,
|
| 205 |
"revision": revision,
|
| 206 |
"private": private,
|
| 207 |
+
"precision": precision,
|
| 208 |
+
"weight_type": weight_type,
|
| 209 |
"status": "PENDING",
|
| 210 |
"submitted_time": current_time,
|
| 211 |
}
|
|
|
|
| 218 |
|
| 219 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
| 220 |
os.makedirs(OUT_DIR, exist_ok=True)
|
| 221 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
|
| 222 |
|
| 223 |
# Check for duplicate submission
|
| 224 |
if out_path.split("eval-queue/")[1].lower() in requested_models:
|
|
|
|
| 382 |
revision_name_textbox = gr.Textbox(
|
| 383 |
label="revision", placeholder="main"
|
| 384 |
)
|
| 385 |
+
private = gr.Checkbox(
|
| 386 |
+
False, label="Private", visible=not IS_PUBLIC
|
| 387 |
+
)
|
| 388 |
|
| 389 |
with gr.Column():
|
| 390 |
+
precision = gr.Dropdown(
|
| 391 |
+
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)"],
|
| 392 |
+
label="Precision",
|
| 393 |
+
multiselect=False,
|
| 394 |
+
value="float16",
|
| 395 |
+
max_choices=1,
|
| 396 |
+
interactive=True,
|
| 397 |
)
|
| 398 |
+
weight_type = gr.Dropdown(
|
| 399 |
+
choices=["Original", "Delta", "Adapter"],
|
| 400 |
+
label="Weights type",
|
| 401 |
+
multiselect=False,
|
| 402 |
+
value="Original",
|
| 403 |
+
max_choices=1,
|
| 404 |
+
interactive=True,
|
| 405 |
)
|
|
|
|
| 406 |
base_model_name_textbox = gr.Textbox(
|
| 407 |
+
label="Base model (for delta or adapter weights)"
|
| 408 |
)
|
| 409 |
|
| 410 |
submit_button = gr.Button("Submit Eval")
|
|
|
|
| 415 |
model_name_textbox,
|
| 416 |
base_model_name_textbox,
|
| 417 |
revision_name_textbox,
|
| 418 |
+
precision,
|
| 419 |
private,
|
| 420 |
+
weight_type,
|
| 421 |
],
|
| 422 |
submission_result,
|
| 423 |
)
|
src/assets/hardcoded_evals.py
CHANGED
|
@@ -3,7 +3,7 @@ from src.utils_display import AutoEvalColumn, model_hyperlink
|
|
| 3 |
gpt4_values = {
|
| 4 |
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt4"),
|
| 5 |
AutoEvalColumn.revision.name: "tech report",
|
| 6 |
-
AutoEvalColumn.
|
| 7 |
AutoEvalColumn.average.name: 84.3,
|
| 8 |
AutoEvalColumn.arc.name: 96.3,
|
| 9 |
AutoEvalColumn.hellaswag.name: 95.3,
|
|
@@ -15,7 +15,7 @@ gpt4_values = {
|
|
| 15 |
gpt35_values = {
|
| 16 |
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt3.5"),
|
| 17 |
AutoEvalColumn.revision.name: "tech report",
|
| 18 |
-
AutoEvalColumn.
|
| 19 |
AutoEvalColumn.average.name: 71.9,
|
| 20 |
AutoEvalColumn.arc.name: 85.2,
|
| 21 |
AutoEvalColumn.hellaswag.name: 85.5,
|
|
@@ -27,7 +27,7 @@ gpt35_values = {
|
|
| 27 |
baseline = {
|
| 28 |
AutoEvalColumn.model.name: "<p>Baseline</p>",
|
| 29 |
AutoEvalColumn.revision.name: "N/A",
|
| 30 |
-
AutoEvalColumn.
|
| 31 |
AutoEvalColumn.average.name: 25.0,
|
| 32 |
AutoEvalColumn.arc.name: 25.0,
|
| 33 |
AutoEvalColumn.hellaswag.name: 25.0,
|
|
|
|
| 3 |
gpt4_values = {
|
| 4 |
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt4"),
|
| 5 |
AutoEvalColumn.revision.name: "tech report",
|
| 6 |
+
AutoEvalColumn.precision.name: None,
|
| 7 |
AutoEvalColumn.average.name: 84.3,
|
| 8 |
AutoEvalColumn.arc.name: 96.3,
|
| 9 |
AutoEvalColumn.hellaswag.name: 95.3,
|
|
|
|
| 15 |
gpt35_values = {
|
| 16 |
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt3.5"),
|
| 17 |
AutoEvalColumn.revision.name: "tech report",
|
| 18 |
+
AutoEvalColumn.precision.name: None,
|
| 19 |
AutoEvalColumn.average.name: 71.9,
|
| 20 |
AutoEvalColumn.arc.name: 85.2,
|
| 21 |
AutoEvalColumn.hellaswag.name: 85.5,
|
|
|
|
| 27 |
baseline = {
|
| 28 |
AutoEvalColumn.model.name: "<p>Baseline</p>",
|
| 29 |
AutoEvalColumn.revision.name: "N/A",
|
| 30 |
+
AutoEvalColumn.precision.name: None,
|
| 31 |
AutoEvalColumn.average.name: 25.0,
|
| 32 |
AutoEvalColumn.arc.name: 25.0,
|
| 33 |
AutoEvalColumn.hellaswag.name: 25.0,
|
src/assets/text_content.py
CHANGED
|
@@ -122,12 +122,16 @@ The tasks and few shots parameters are:
|
|
| 122 |
- TruthfulQA: 0-shot, *truthfulqa-mc* (`mc2`)
|
| 123 |
- MMLU: 5-shot, *hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions* (`acc` of `all`)
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
# In case of model failure
|
| 126 |
If your model is displayed in the `FAILED` category, its execution stopped.
|
| 127 |
Make sure you have followed the above steps first.
|
| 128 |
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
| 129 |
|
| 130 |
-
|
| 131 |
"""
|
| 132 |
|
| 133 |
EVALUATION_QUEUE_TEXT = f"""
|
|
|
|
| 122 |
- TruthfulQA: 0-shot, *truthfulqa-mc* (`mc2`)
|
| 123 |
- MMLU: 5-shot, *hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions* (`acc` of `all`)
|
| 124 |
|
| 125 |
+
### Quantization
|
| 126 |
+
To get more information about quantization, see:
|
| 127 |
+
- 8 bits: [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), [paper](https://arxiv.org/abs/2208.07339)
|
| 128 |
+
- 4 bits: [blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes), [paper](https://arxiv.org/abs/2305.14314)
|
| 129 |
+
|
| 130 |
# In case of model failure
|
| 131 |
If your model is displayed in the `FAILED` category, its execution stopped.
|
| 132 |
Make sure you have followed the above steps first.
|
| 133 |
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
| 134 |
|
|
|
|
| 135 |
"""
|
| 136 |
|
| 137 |
EVALUATION_QUEUE_TEXT = f"""
|
src/auto_leaderboard/get_model_metadata.py
CHANGED
|
@@ -36,7 +36,7 @@ def get_model_license(model_info):
|
|
| 36 |
def get_model_likes(model_info):
|
| 37 |
return model_info.likes
|
| 38 |
|
| 39 |
-
size_pattern = re.compile(r"\d+(b|m)")
|
| 40 |
|
| 41 |
def get_model_size(model_name, model_info):
|
| 42 |
# In billions
|
|
@@ -46,7 +46,7 @@ def get_model_size(model_name, model_info):
|
|
| 46 |
try:
|
| 47 |
size_match = re.search(size_pattern, model_name.lower())
|
| 48 |
size = size_match.group(0)
|
| 49 |
-
return round(
|
| 50 |
except AttributeError:
|
| 51 |
return None
|
| 52 |
|
|
|
|
| 36 |
def get_model_likes(model_info):
|
| 37 |
return model_info.likes
|
| 38 |
|
| 39 |
+
size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
|
| 40 |
|
| 41 |
def get_model_size(model_name, model_info):
|
| 42 |
# In billions
|
|
|
|
| 46 |
try:
|
| 47 |
size_match = re.search(size_pattern, model_name.lower())
|
| 48 |
size = size_match.group(0)
|
| 49 |
+
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
| 50 |
except AttributeError:
|
| 51 |
return None
|
| 52 |
|
src/auto_leaderboard/load_results.py
CHANGED
|
@@ -24,7 +24,7 @@ class EvalResult:
|
|
| 24 |
model: str
|
| 25 |
revision: str
|
| 26 |
results: dict
|
| 27 |
-
|
| 28 |
|
| 29 |
def to_dict(self):
|
| 30 |
if self.org is not None:
|
|
@@ -34,7 +34,7 @@ class EvalResult:
|
|
| 34 |
data_dict = {}
|
| 35 |
|
| 36 |
data_dict["eval_name"] = self.eval_name # not a column, just a save name
|
| 37 |
-
data_dict[AutoEvalColumn.
|
| 38 |
data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model)
|
| 39 |
data_dict[AutoEvalColumn.dummy.name] = base_model
|
| 40 |
data_dict[AutoEvalColumn.revision.name] = self.revision
|
|
|
|
| 24 |
model: str
|
| 25 |
revision: str
|
| 26 |
results: dict
|
| 27 |
+
precision: str = "16bit"
|
| 28 |
|
| 29 |
def to_dict(self):
|
| 30 |
if self.org is not None:
|
|
|
|
| 34 |
data_dict = {}
|
| 35 |
|
| 36 |
data_dict["eval_name"] = self.eval_name # not a column, just a save name
|
| 37 |
+
data_dict[AutoEvalColumn.precision.name] = self.precision
|
| 38 |
data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model)
|
| 39 |
data_dict[AutoEvalColumn.dummy.name] = base_model
|
| 40 |
data_dict[AutoEvalColumn.revision.name] = self.revision
|
src/auto_leaderboard/model_metadata_type.py
CHANGED
|
@@ -161,3 +161,12 @@ TYPE_METADATA: Dict[str, ModelType] = {
|
|
| 161 |
def get_model_type(leaderboard_data: List[dict]):
|
| 162 |
for model_data in leaderboard_data:
|
| 163 |
model_data["Type"] = TYPE_METADATA.get(model_data["model_name_for_query"], "N/A")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
def get_model_type(leaderboard_data: List[dict]):
|
| 162 |
for model_data in leaderboard_data:
|
| 163 |
model_data["Type"] = TYPE_METADATA.get(model_data["model_name_for_query"], "N/A")
|
| 164 |
+
if model_data["Type"] == "N/A":
|
| 165 |
+
if any([i in model_data["model_name_for_query"] for i in ["finetuned", "-ft-"]]):
|
| 166 |
+
model_data["Type"] = ModelType.SFT
|
| 167 |
+
elif any([i in model_data["model_name_for_query"] for i in ["pretrained"]]):
|
| 168 |
+
model_data["Type"] = ModelType.PT
|
| 169 |
+
elif any([i in model_data["model_name_for_query"] for i in ["-rl-", "-rlhf-"]]):
|
| 170 |
+
model_data["Type"] = ModelType.RL
|
| 171 |
+
|
| 172 |
+
|
src/utils_display.py
CHANGED
|
@@ -20,8 +20,8 @@ class AutoEvalColumn: # Auto evals column
|
|
| 20 |
hellaswag = ColumnContent("HellaSwag ⬆️", "number", True)
|
| 21 |
mmlu = ColumnContent("MMLU ⬆️", "number", True)
|
| 22 |
truthfulqa = ColumnContent("TruthfulQA (MC) ⬆️", "number", True)
|
| 23 |
-
model_type = ColumnContent("Type", "
|
| 24 |
-
|
| 25 |
license = ColumnContent("Hub License", "str", False)
|
| 26 |
params = ColumnContent("#Params (B)", "number", False)
|
| 27 |
likes = ColumnContent("Hub ❤️", "number", False)
|
|
@@ -42,8 +42,8 @@ class EvalQueueColumn: # Queue column
|
|
| 42 |
model = ColumnContent("model", "markdown", True)
|
| 43 |
revision = ColumnContent("revision", "str", True)
|
| 44 |
private = ColumnContent("private", "bool", True)
|
| 45 |
-
|
| 46 |
-
|
| 47 |
status = ColumnContent("status", "str", True)
|
| 48 |
|
| 49 |
LLAMAS = ["huggingface/llama-7b", "huggingface/llama-13b", "huggingface/llama-30b", "huggingface/llama-65b"]
|
|
|
|
| 20 |
hellaswag = ColumnContent("HellaSwag ⬆️", "number", True)
|
| 21 |
mmlu = ColumnContent("MMLU ⬆️", "number", True)
|
| 22 |
truthfulqa = ColumnContent("TruthfulQA (MC) ⬆️", "number", True)
|
| 23 |
+
model_type = ColumnContent("Type", "str", False)
|
| 24 |
+
precision = ColumnContent("Precision", "str", False, True)
|
| 25 |
license = ColumnContent("Hub License", "str", False)
|
| 26 |
params = ColumnContent("#Params (B)", "number", False)
|
| 27 |
likes = ColumnContent("Hub ❤️", "number", False)
|
|
|
|
| 42 |
model = ColumnContent("model", "markdown", True)
|
| 43 |
revision = ColumnContent("revision", "str", True)
|
| 44 |
private = ColumnContent("private", "bool", True)
|
| 45 |
+
precision = ColumnContent("precision", "bool", True)
|
| 46 |
+
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 47 |
status = ColumnContent("status", "str", True)
|
| 48 |
|
| 49 |
LLAMAS = ["huggingface/llama-7b", "huggingface/llama-13b", "huggingface/llama-30b", "huggingface/llama-65b"]
|