Spaces:
Running
on
Zero
Running
on
Zero
malvin noel
commited on
Commit
Β·
aef0378
1
Parent(s):
6b9a6b5
change script
Browse files- scripts/generate_scripts.py +86 -37
scripts/generate_scripts.py
CHANGED
@@ -1,89 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
-
import
|
4 |
-
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
-
import gradio as gr
|
7 |
-
from dotenv import load_dotenv
|
8 |
import spaces
|
|
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
def generate_local(prompt: str, max_new_tokens: int = 350, temperature: float = 0.7) -> str:
|
16 |
-
model_id = "Qwen/Qwen3-0.6B"
|
17 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # get the device the model is on
|
18 |
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
20 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, trust_remote_code=True).to(device)
|
21 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
22 |
-
|
23 |
output_ids = model.generate(
|
24 |
**inputs,
|
25 |
max_new_tokens=max_new_tokens,
|
26 |
do_sample=True,
|
27 |
-
temperature=temperature,
|
28 |
pad_token_id=tokenizer.eos_token_id,
|
29 |
)
|
30 |
-
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
31 |
|
|
|
32 |
|
33 |
|
34 |
-
def generate_script(
|
|
|
|
|
35 |
system_prompt = (
|
36 |
"You are an expert YouTube scriptwriter. "
|
37 |
"Your job is to write the EXACT words that will be spoken aloud in a video. "
|
38 |
-
f"Topic: {
|
39 |
"π― Output rules:\n"
|
40 |
f"- Exactly {word_count} words.\n"
|
41 |
"- Only the spoken words. NO scene descriptions, instructions, or formatting.\n"
|
42 |
-
"- Write in natural, clear, and simple English, as if it's being said by a
|
43 |
"- Keep a steady rhythm (about 2 words per second).\n"
|
44 |
"- Do NOT include any explanations, labels, or headers. Only output the final spoken script.\n\n"
|
45 |
"Start now:"
|
46 |
)
|
47 |
-
return generate_local(system_prompt)
|
|
|
48 |
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
"
|
53 |
-
'{"keyword": "impact"}. Text: ' + query
|
54 |
)
|
55 |
-
result = generate_local(
|
|
|
|
|
56 |
try:
|
57 |
-
|
58 |
-
keyword = keyword_json.get("keyword", "")
|
59 |
except json.JSONDecodeError:
|
60 |
-
|
|
|
61 |
keyword = matches[0] if matches else ""
|
62 |
return keyword.lower()
|
63 |
|
64 |
|
65 |
def generate_title(text: str) -> str:
|
66 |
-
|
67 |
"Generate a unique title for a YouTube Short video that is engaging and informative, "
|
68 |
-
"
|
69 |
)
|
70 |
-
return generate_local(
|
|
|
71 |
|
72 |
def generate_description(text: str) -> str:
|
73 |
-
|
74 |
"Write only the YouTube video description in English:\n"
|
75 |
"1. A compelling opening line.\n"
|
76 |
"2. A clear summary of the video (max 3 lines).\n"
|
77 |
"3. End with 3 relevant hashtags.\n"
|
78 |
"No emojis or introductions. Here is the text:\n" + text
|
79 |
)
|
80 |
-
return generate_local(
|
81 |
|
82 |
-
|
83 |
-
|
|
|
84 |
"List only the important keywords for this YouTube video, separated by commas, "
|
85 |
"maximum 10 keywords. Context: " + text
|
86 |
)
|
87 |
-
|
88 |
-
return [tag.strip() for tag in
|
89 |
-
|
|
|
1 |
+
"""Reusable helpers for YouTubeβcontent generation.
|
2 |
+
Optimisations applied:
|
3 |
+
β’ Model + tokenizer are loaded **once** at importβtime, not per call.
|
4 |
+
β’ FP16 + `device_map=\"auto\"` for smaller VRAM + faster inference.
|
5 |
+
β’ `@spaces.GPU()` decorator keeps the worker on a GPU Space.
|
6 |
+
β’ All generation helpers reuse a single `generate_local()` for consistency.
|
7 |
+
β’ Minimal error handling + regex fallback when JSON parsing fails.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import json
|
11 |
import os
|
12 |
import re
|
13 |
+
from typing import List
|
14 |
+
|
|
|
|
|
|
|
15 |
import spaces
|
16 |
+
import torch
|
17 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
18 |
|
19 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
20 |
+
# Model initialisation (runs ONCE per Space replica)
|
21 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
22 |
+
MODEL_ID = os.getenv("LLM_ID", "Qwen/Qwen3-0.6B")
|
23 |
+
DTYPE = torch.float16 # fp16 fits comfortably on freeβtier A10G/ T4
|
24 |
+
|
25 |
+
# Load tokenizer + model once; they live for the lifetime of the process
|
26 |
+
print(f"π Loading model {MODEL_ID} β¦")
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
29 |
+
model = (
|
30 |
+
AutoModelForCausalLM
|
31 |
+
.from_pretrained(
|
32 |
+
MODEL_ID,
|
33 |
+
torch_dtype=DTYPE,
|
34 |
+
device_map="auto", # puts weights straight on the first CUDA device if available
|
35 |
+
trust_remote_code=True,
|
36 |
+
)
|
37 |
+
.eval()
|
38 |
+
) # .eval() disables dropout β deterministic + minor speed boost
|
39 |
+
print("β
Model loaded once.")
|
40 |
+
|
41 |
+
# Prevent accidental CPU fallback when GPU memory is full
|
42 |
+
DEVICE = model.device
|
43 |
|
44 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
45 |
+
# Core textβgeneration helper
|
46 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
47 |
|
48 |
+
@spaces.GPU() # Ensures this worker stays on a GPU node in HF Spaces
|
49 |
+
@torch.inference_mode() # no_grad + autocast under the hood in 2.2+
|
50 |
+
def generate_local(
|
51 |
+
prompt: str,
|
52 |
+
*,
|
53 |
+
max_new_tokens: int = 350,
|
54 |
+
temperature: float = 0.7,
|
55 |
+
) -> str:
|
56 |
+
"""Lowβlevel wrapper around `model.generate()` using the shared model."""
|
57 |
|
58 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
|
|
|
|
|
|
59 |
|
|
|
|
|
|
|
|
|
60 |
output_ids = model.generate(
|
61 |
**inputs,
|
62 |
max_new_tokens=max_new_tokens,
|
63 |
do_sample=True,
|
64 |
+
temperature=float(temperature), # ensure JSONβserialisable types are cast properly
|
65 |
pad_token_id=tokenizer.eos_token_id,
|
66 |
)
|
67 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
68 |
+
|
69 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
70 |
+
# Highβlevel helpers for YouTube workflow
|
71 |
+
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
72 |
|
73 |
+
WORDS_PER_SECOND = 2 # used by callers to estimate length; not critical here
|
74 |
|
75 |
|
76 |
+
def generate_script(topic: str, word_count: int = 60) -> str:
|
77 |
+
"""Return a *spoken* script of exactly `word_count` words on `topic`."""
|
78 |
+
|
79 |
system_prompt = (
|
80 |
"You are an expert YouTube scriptwriter. "
|
81 |
"Your job is to write the EXACT words that will be spoken aloud in a video. "
|
82 |
+
f"Topic: {topic.strip()}\n\n"
|
83 |
"π― Output rules:\n"
|
84 |
f"- Exactly {word_count} words.\n"
|
85 |
"- Only the spoken words. NO scene descriptions, instructions, or formatting.\n"
|
86 |
+
"- Write in natural, clear, and simple English, as if it's being said by a voiceβover artist.\n"
|
87 |
"- Keep a steady rhythm (about 2 words per second).\n"
|
88 |
"- Do NOT include any explanations, labels, or headers. Only output the final spoken script.\n\n"
|
89 |
"Start now:"
|
90 |
)
|
91 |
+
return generate_local(system_prompt, max_new_tokens=word_count * 2, temperature=0.8)
|
92 |
+
|
93 |
|
94 |
+
def one_word(text: str) -> str:
|
95 |
+
"""Extract a single keyword that summarises *text*. Returns lowercase string."""
|
96 |
|
97 |
+
prompt = (
|
98 |
+
"Extract only the unique central theme of the following text in English "
|
99 |
+
"as JSON: {\"keyword\": \"impact\"}. Text: " + text
|
|
|
100 |
)
|
101 |
+
result = generate_local(prompt, max_new_tokens=30, temperature=0.4)
|
102 |
+
|
103 |
+
# Try JSON first
|
104 |
try:
|
105 |
+
keyword = json.loads(result).get("keyword", "")
|
|
|
106 |
except json.JSONDecodeError:
|
107 |
+
# Fallback: pick first 3+ letter word
|
108 |
+
matches = re.findall(r"\\b[a-zA-Z]{3,}\\b", result)
|
109 |
keyword = matches[0] if matches else ""
|
110 |
return keyword.lower()
|
111 |
|
112 |
|
113 |
def generate_title(text: str) -> str:
|
114 |
+
prompt = (
|
115 |
"Generate a unique title for a YouTube Short video that is engaging and informative, "
|
116 |
+
"max 100 characters, without emojis, introduction, or explanation. Content:\n" + text
|
117 |
)
|
118 |
+
return generate_local(prompt, max_new_tokens=50, temperature=0.9)
|
119 |
+
|
120 |
|
121 |
def generate_description(text: str) -> str:
|
122 |
+
prompt = (
|
123 |
"Write only the YouTube video description in English:\n"
|
124 |
"1. A compelling opening line.\n"
|
125 |
"2. A clear summary of the video (max 3 lines).\n"
|
126 |
"3. End with 3 relevant hashtags.\n"
|
127 |
"No emojis or introductions. Here is the text:\n" + text
|
128 |
)
|
129 |
+
return generate_local(prompt, max_new_tokens=300, temperature=0.7)
|
130 |
|
131 |
+
|
132 |
+
def generate_tags(text: str) -> List[str]:
|
133 |
+
prompt = (
|
134 |
"List only the important keywords for this YouTube video, separated by commas, "
|
135 |
"maximum 10 keywords. Context: " + text
|
136 |
)
|
137 |
+
raw = generate_local(prompt, max_new_tokens=100, temperature=0.5)
|
138 |
+
return [tag.strip() for tag in raw.split(",") if tag.strip()]
|
|