Spaces:
Runtime error
Runtime error
malvin noel
commited on
Commit
·
b73d328
1
Parent(s):
d5d7c32
space.gpu corrected
Browse files- scripts/generate_scripts.py +6 -10
- scripts/generate_subtitles.py +1 -1
scripts/generate_scripts.py
CHANGED
@@ -6,10 +6,6 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
6 |
import gradio as gr
|
7 |
from dotenv import load_dotenv
|
8 |
import spaces
|
9 |
-
|
10 |
-
|
11 |
-
# Chargement du modèle et du tokenizer
|
12 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
import torch
|
14 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
15 |
|
@@ -18,8 +14,10 @@ model_id = "Qwen/Qwen2.5-0.5B"
|
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
19 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, trust_remote_code=True).to(device)
|
20 |
|
|
|
|
|
21 |
def generate_local(prompt: str, max_new_tokens: int = 350, temperature: float = 0.7) -> str:
|
22 |
-
device =
|
23 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
24 |
|
25 |
output_ids = model.generate(
|
@@ -32,7 +30,7 @@ def generate_local(prompt: str, max_new_tokens: int = 350, temperature: float =
|
|
32 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
33 |
|
34 |
|
35 |
-
|
36 |
def generate_script(prompt: str, word_count: int = 60) -> str:
|
37 |
system_prompt = (
|
38 |
"You are a professional video scriptwriter. "
|
@@ -41,7 +39,7 @@ def generate_script(prompt: str, word_count: int = 60) -> str:
|
|
41 |
)
|
42 |
return generate_local(system_prompt)
|
43 |
|
44 |
-
|
45 |
def one_word(query: str) -> str:
|
46 |
prompt_final = (
|
47 |
"Extract only the unique central theme of the following text in English in JSON format like this: "
|
@@ -56,7 +54,7 @@ def one_word(query: str) -> str:
|
|
56 |
keyword = matches[0] if matches else ""
|
57 |
return keyword.lower()
|
58 |
|
59 |
-
|
60 |
def generate_title(text: str) -> str:
|
61 |
prompt_final = (
|
62 |
"Generate a unique title for a YouTube Short video that is engaging and informative, "
|
@@ -64,7 +62,6 @@ def generate_title(text: str) -> str:
|
|
64 |
)
|
65 |
return generate_local(prompt_final, max_new_tokens=50, temperature=0.9).strip()
|
66 |
|
67 |
-
@spaces.GPU()
|
68 |
def generate_description(text: str) -> str:
|
69 |
prompt_final = (
|
70 |
"Write only the YouTube video description in English:\n"
|
@@ -75,7 +72,6 @@ def generate_description(text: str) -> str:
|
|
75 |
)
|
76 |
return generate_local(prompt_final, max_new_tokens=300, temperature=0.7).strip()
|
77 |
|
78 |
-
@spaces.GPU()
|
79 |
def generate_tags(text: str) -> list:
|
80 |
prompt_final = (
|
81 |
"List only the important keywords for this YouTube video, separated by commas, "
|
|
|
6 |
import gradio as gr
|
7 |
from dotenv import load_dotenv
|
8 |
import spaces
|
|
|
|
|
|
|
|
|
9 |
import torch
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
|
|
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
15 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, trust_remote_code=True).to(device)
|
16 |
|
17 |
+
|
18 |
+
@spaces.GPU()
|
19 |
def generate_local(prompt: str, max_new_tokens: int = 350, temperature: float = 0.7) -> str:
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # get the device the model is on
|
21 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
22 |
|
23 |
output_ids = model.generate(
|
|
|
30 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
31 |
|
32 |
|
33 |
+
|
34 |
def generate_script(prompt: str, word_count: int = 60) -> str:
|
35 |
system_prompt = (
|
36 |
"You are a professional video scriptwriter. "
|
|
|
39 |
)
|
40 |
return generate_local(system_prompt)
|
41 |
|
42 |
+
|
43 |
def one_word(query: str) -> str:
|
44 |
prompt_final = (
|
45 |
"Extract only the unique central theme of the following text in English in JSON format like this: "
|
|
|
54 |
keyword = matches[0] if matches else ""
|
55 |
return keyword.lower()
|
56 |
|
57 |
+
|
58 |
def generate_title(text: str) -> str:
|
59 |
prompt_final = (
|
60 |
"Generate a unique title for a YouTube Short video that is engaging and informative, "
|
|
|
62 |
)
|
63 |
return generate_local(prompt_final, max_new_tokens=50, temperature=0.9).strip()
|
64 |
|
|
|
65 |
def generate_description(text: str) -> str:
|
66 |
prompt_final = (
|
67 |
"Write only the YouTube video description in English:\n"
|
|
|
72 |
)
|
73 |
return generate_local(prompt_final, max_new_tokens=300, temperature=0.7).strip()
|
74 |
|
|
|
75 |
def generate_tags(text: str) -> list:
|
76 |
prompt_final = (
|
77 |
"List only the important keywords for this YouTube video, separated by commas, "
|
scripts/generate_subtitles.py
CHANGED
@@ -90,7 +90,7 @@ def transcribe_audio_to_subs(audio_path):
|
|
90 |
des segments start/end/text, et sauvegarde en .srt.
|
91 |
"""
|
92 |
print("🎙️ Transcription avec Whisper...")
|
93 |
-
model = whisper.load_model("medium"
|
94 |
result = model.transcribe(audio_path)
|
95 |
|
96 |
subtitles = [{
|
|
|
90 |
des segments start/end/text, et sauvegarde en .srt.
|
91 |
"""
|
92 |
print("🎙️ Transcription avec Whisper...")
|
93 |
+
model = whisper.load_model("medium")
|
94 |
result = model.transcribe(audio_path)
|
95 |
|
96 |
subtitles = [{
|