Spaces:
Sleeping
Sleeping
File size: 5,137 Bytes
75a63b2 bc2875c 75a63b2 bc2875c 76b6f27 bc2875c 76b6f27 bc2875c f9b91f5 7521d2f 75a63b2 bc2875c 7521d2f 75a63b2 7521d2f 75a63b2 7521d2f 75a63b2 bc2875c 7521d2f bc2875c 7521d2f bc2875c 7521d2f bc2875c 76b6f27 bc2875c 7521d2f bc2875c 7521d2f bc2875c 76b6f27 bc2875c 76b6f27 bc2875c 7521d2f bc2875c 76b6f27 bc2875c 7521d2f bc2875c 7521d2f bc2875c 76b6f27 75a63b2 bc2875c 76b6f27 7521d2f 76b6f27 7521d2f 76b6f27 7521d2f 76b6f27 7521d2f 76b6f27 7521d2f 76b6f27 7521d2f 76b6f27 7521d2f 76b6f27 7521d2f 76b6f27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import logging
import httpx
from dotenv import load_dotenv
import gradio as gr
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
logger.info("Environment variables loaded from .env file")
logger.info(f"OPENAI_API_KEY present: {'OPENAI_API_KEY' in os.environ}")
logger.info(f"ANTHROPIC_API_KEY present: {'ANTHROPIC_API_KEY' in os.environ}")
logger.info(f"GEMINI_API_KEY present: {'GEMINI_API_KEY' in os.environ}")
async def ask_openai(query: str):
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
logger.error("OpenAI API key not provided")
return "Error: OpenAI API key not provided."
headers = {
"Authorization": f"Bearer {openai_api_key}",
"Content-Type": "application/json"
}
payload = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": query}]
}
try:
async with httpx.AsyncClient() as client:
response = await client.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
response.raise_for_status()
answer = response.json()['choices'][0]['message']['content']
return answer
except httpx.HTTPStatusError as e:
logger.error(f"OpenAI HTTP Status Error: {e.response.status_code}, {e.response.text}")
return f"Error: OpenAI HTTP Status Error: {e.response.status_code}, {e.response.text}"
except Exception as e:
logger.error(f"OpenAI Error: {str(e)}")
return f"Error: OpenAI Error: {str(e)}"
async def ask_anthropic(query: str):
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
if not anthropic_api_key:
logger.error("Anthropic API key not provided")
return "Error: Anthropic API key not provided."
headers = {
"x-api-key": anthropic_api_key,
"anthropic-version": "2023-06-01",
"Content-Type": "application/json"
}
payload = {
"model": "claude-3-5-sonnet-20241022",
"max_tokens": 1024,
"messages": [{"role": "user", "content": query}]
}
try:
async with httpx.AsyncClient() as client:
logger.info(f"Sending Anthropic request: {payload}")
response = await client.post("https://api.anthropic.com/v1/messages", headers=headers, json=payload)
response.raise_for_status()
logger.info(f"Anthropic response: {response.json()}")
answer = response.json()['content'][0]['text']
return answer
except httpx.HTTPStatusError as e:
logger.error(f"Anthropic HTTP Status Error: {e.response.status_code}, {e.response.text}")
return f"Error: Anthropic HTTP Status Error: {e.response.status_code}, {e.response.text}"
except Exception as e:
logger.error(f"Anthropic Error: {str(e)}")
return f"Error: Anthropic Error: {str(e)}"
async def ask_gemini(query: str):
gemini_api_key = os.getenv("GEMINI_API_KEY")
if not gemini_api_key:
logger.error("Gemini API key not provided")
return "Error: Gemini API key not provided."
headers = {
"Content-Type": "application/json"
}
payload = {
"contents": [{"parts": [{"text": query}]}]
}
try:
async with httpx.AsyncClient() as client:
response = await client.post(
f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key={gemini_api_key}",
headers=headers,
json=payload
)
response.raise_for_status()
answer = response.json()['candidates'][0]['content']['parts'][0]['text']
return answer
except httpx.HTTPStatusError as e:
logger.error(f"Gemini HTTP Status Error: {e.response.status_code}, {e.response.text}")
return f"Error: Gemini HTTP Status Error: {e.response.status_code}, {e.response.text}"
except Exception as e:
logger.error(f"Gemini Error: {str(e)}")
return f"Error: Gemini Error: {str(e)}"
async def query_model(query: str, provider: str):
provider = provider.lower()
if provider == "openai":
return await ask_openai(query)
elif provider == "anthropic":
return await ask_anthropic(query)
elif provider == "gemini":
return await ask_gemini(query)
else:
return f"Error: Unknown provider: {provider}"
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Multi-Model Selector")
gr.Markdown("Select a provider and enter a query to get a response from the chosen AI model.")
provider = gr.Dropdown(choices=["OpenAI", "Anthropic", "Gemini"], label="Select Provider")
query = gr.Textbox(label="Enter your query", placeholder="e.g., What is the capital of the United States?")
submit_button = gr.Button("Submit")
output = gr.Textbox(label="Response", interactive=False)
submit_button.click(
fn=query_model,
inputs=[query, provider],
outputs=output
)
# Launch the Gradio app
demo.launch() |