File size: 5,137 Bytes
75a63b2
bc2875c
75a63b2
bc2875c
76b6f27
bc2875c
 
 
 
 
76b6f27
bc2875c
 
 
 
 
f9b91f5
7521d2f
75a63b2
 
bc2875c
7521d2f
75a63b2
 
 
 
 
 
 
 
7521d2f
75a63b2
 
 
 
7521d2f
 
 
 
 
75a63b2
 
bc2875c
7521d2f
bc2875c
 
7521d2f
bc2875c
7521d2f
bc2875c
 
 
76b6f27
bc2875c
 
 
 
 
 
 
 
 
 
7521d2f
bc2875c
 
 
 
 
 
 
 
 
7521d2f
 
bc2875c
 
 
76b6f27
bc2875c
 
76b6f27
bc2875c
7521d2f
bc2875c
 
 
76b6f27
bc2875c
 
 
 
 
 
7521d2f
bc2875c
 
 
 
 
 
 
 
 
 
 
7521d2f
 
bc2875c
 
 
76b6f27
75a63b2
bc2875c
76b6f27
 
7521d2f
76b6f27
 
7521d2f
76b6f27
7521d2f
76b6f27
7521d2f
76b6f27
7521d2f
76b6f27
 
7521d2f
 
 
 
 
 
 
 
76b6f27
7521d2f
76b6f27
7521d2f
 
76b6f27
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import logging
import httpx
from dotenv import load_dotenv
import gradio as gr

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()
logger.info("Environment variables loaded from .env file")
logger.info(f"OPENAI_API_KEY present: {'OPENAI_API_KEY' in os.environ}")
logger.info(f"ANTHROPIC_API_KEY present: {'ANTHROPIC_API_KEY' in os.environ}")
logger.info(f"GEMINI_API_KEY present: {'GEMINI_API_KEY' in os.environ}")

async def ask_openai(query: str):
    openai_api_key = os.getenv("OPENAI_API_KEY")
    if not openai_api_key:
        logger.error("OpenAI API key not provided")
        return "Error: OpenAI API key not provided."

    headers = {
        "Authorization": f"Bearer {openai_api_key}",
        "Content-Type": "application/json"
    }

    payload = {
        "model": "gpt-3.5-turbo",
        "messages": [{"role": "user", "content": query}]
    }

    try:
        async with httpx.AsyncClient() as client:
            response = await client.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
        
        response.raise_for_status()
        answer = response.json()['choices'][0]['message']['content']
        return answer

    except httpx.HTTPStatusError as e:
        logger.error(f"OpenAI HTTP Status Error: {e.response.status_code}, {e.response.text}")
        return f"Error: OpenAI HTTP Status Error: {e.response.status_code}, {e.response.text}"
    except Exception as e:
        logger.error(f"OpenAI Error: {str(e)}")
        return f"Error: OpenAI Error: {str(e)}"

async def ask_anthropic(query: str):
    anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
    if not anthropic_api_key:
        logger.error("Anthropic API key not provided")
        return "Error: Anthropic API key not provided."

    headers = {
        "x-api-key": anthropic_api_key,
        "anthropic-version": "2023-06-01",
        "Content-Type": "application/json"
    }

    payload = {
        "model": "claude-3-5-sonnet-20241022",
        "max_tokens": 1024,
        "messages": [{"role": "user", "content": query}]
    }

    try:
        async with httpx.AsyncClient() as client:
            logger.info(f"Sending Anthropic request: {payload}")
            response = await client.post("https://api.anthropic.com/v1/messages", headers=headers, json=payload)
        
        response.raise_for_status()
        logger.info(f"Anthropic response: {response.json()}")
        answer = response.json()['content'][0]['text']
        return answer

    except httpx.HTTPStatusError as e:
        logger.error(f"Anthropic HTTP Status Error: {e.response.status_code}, {e.response.text}")
        return f"Error: Anthropic HTTP Status Error: {e.response.status_code}, {e.response.text}"
    except Exception as e:
        logger.error(f"Anthropic Error: {str(e)}")
        return f"Error: Anthropic Error: {str(e)}"

async def ask_gemini(query: str):
    gemini_api_key = os.getenv("GEMINI_API_KEY")
    if not gemini_api_key:
        logger.error("Gemini API key not provided")
        return "Error: Gemini API key not provided."

    headers = {
        "Content-Type": "application/json"
    }

    payload = {
        "contents": [{"parts": [{"text": query}]}]
    }

    try:
        async with httpx.AsyncClient() as client:
            response = await client.post(
                f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key={gemini_api_key}",
                headers=headers,
                json=payload
            )
        
        response.raise_for_status()
        answer = response.json()['candidates'][0]['content']['parts'][0]['text']
        return answer

    except httpx.HTTPStatusError as e:
        logger.error(f"Gemini HTTP Status Error: {e.response.status_code}, {e.response.text}")
        return f"Error: Gemini HTTP Status Error: {e.response.status_code}, {e.response.text}"
    except Exception as e:
        logger.error(f"Gemini Error: {str(e)}")
        return f"Error: Gemini Error: {str(e)}"

async def query_model(query: str, provider: str):
    provider = provider.lower()
    if provider == "openai":
        return await ask_openai(query)
    elif provider == "anthropic":
        return await ask_anthropic(query)
    elif provider == "gemini":
        return await ask_gemini(query)
    else:
        return f"Error: Unknown provider: {provider}"

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Multi-Model Selector")
    gr.Markdown("Select a provider and enter a query to get a response from the chosen AI model.")
    
    provider = gr.Dropdown(choices=["OpenAI", "Anthropic", "Gemini"], label="Select Provider")
    query = gr.Textbox(label="Enter your query", placeholder="e.g., What is the capital of the United States?")
    submit_button = gr.Button("Submit")
    output = gr.Textbox(label="Response", interactive=False)
    
    submit_button.click(
        fn=query_model,
        inputs=[query, provider],
        outputs=output
    )

# Launch the Gradio app
demo.launch()