File size: 8,689 Bytes
75a63b2
bc2875c
75a63b2
bc2875c
76b6f27
e71d648
bc2875c
 
 
 
 
76b6f27
bc2875c
 
 
 
 
f9b91f5
e71d648
75a63b2
 
bc2875c
e71d648
 
 
 
 
 
 
 
 
 
75a63b2
 
 
 
 
 
 
 
e71d648
 
75a63b2
 
 
 
e71d648
 
fac7191
e71d648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a63b2
 
bc2875c
e71d648
bc2875c
 
e71d648
bc2875c
e71d648
bc2875c
 
 
76b6f27
bc2875c
e71d648
 
 
 
 
 
 
 
bc2875c
 
 
 
 
 
 
 
 
e71d648
bc2875c
 
 
 
 
 
 
 
 
e71d648
bc2875c
 
 
76b6f27
bc2875c
 
76b6f27
bc2875c
e71d648
bc2875c
 
 
76b6f27
bc2875c
e71d648
 
 
 
 
 
bc2875c
 
 
 
 
e71d648
bc2875c
 
 
 
 
 
 
 
 
 
 
e71d648
bc2875c
 
 
76b6f27
75a63b2
bc2875c
76b6f27
 
128373b
76b6f27
e71d648
 
76b6f27
e71d648
 
 
76b6f27
e71d648
 
76b6f27
e71d648
 
76b6f27
e71d648
 
 
 
 
fac7191
e71d648
76b6f27
fac7191
128373b
fac7191
 
128373b
 
 
 
 
fac7191
128373b
76b6f27
e71d648
 
 
 
 
 
7521d2f
e71d648
 
128373b
7521d2f
 
e71d648
 
7521d2f
e71d648
 
 
 
 
 
 
 
76b6f27
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import logging
import httpx
from dotenv import load_dotenv
import gradio as gr
from typing import AsyncGenerator, List, Dict, Tuple

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()
logger.info("Environment variables loaded from .env file")
logger.info(f"OPENAI_API_KEY present: {'OPENAI_API_KEY' in os.environ}")
logger.info(f"ANTHROPIC_API_KEY present: {'ANTHROPIC_API_KEY' in os.environ}")
logger.info(f"GEMINI_API_KEY present: {'GEMINI_API_KEY' in os.environ}")

async def ask_openai(query: str, history: List[Dict[str, str]]) -> AsyncGenerator[str, None]:
    openai_api_key = os.getenv("OPENAI_API_KEY")
    if not openai_api_key:
        logger.error("OpenAI API key not provided")
        yield "Error: OpenAI API key not provided."
        return

    # Build message history
    messages = []
    for msg in history:
        messages.append({"role": "user", "content": msg["user"]})
        if msg["bot"]:
            messages.append({"role": "assistant", "content": msg["bot"]})
    messages.append({"role": "user", "content": query})

    headers = {
        "Authorization": f"Bearer {openai_api_key}",
        "Content-Type": "application/json"
    }

    payload = {
        "model": "gpt-3.5-turbo",
        "messages": messages,
        "stream": True
    }

    try:
        async with httpx.AsyncClient() as client:
            async with client.stream("POST", "https://api.openai.com/v1/chat/completions", headers=headers, json=payload) as response:
                response.raise_for_status()
                async for chunk in response.intro_text():
                    if chunk:
                        # Parse the streaming chunk (JSON lines)
                        lines = chunk.splitlines()
                        for line in lines:
                            if line.startswith("data: "):
                                data = line[6:]  # Remove "data: " prefix
                                if data == "[DONE]":
                                    break
                                try:
                                    json_data = eval(data)  # Safely parse JSON
                                    if "choices" in json_data and json_data["choices"]:
                                        delta = json_data["choices"][0].get("delta", {})
                                        if "content" in delta:
                                            yield delta["content"]
                                except Exception as e:
                                    logger.error(f"Error parsing OpenAI stream chunk: {str(e)}")
                                    yield f"Error parsing stream: {str(e)}"

    except httpx.HTTPStatusError as e:
        logger.error(f"OpenAI HTTP Status Error: {e.response.status_code}, {e.response.text}")
        yield f"Error: OpenAI HTTP Status Error: {e.response.status_code}, {e.response.text}"
    except Exception as e:
        logger.error(f"OpenAI Error: {str(e)}")
        yield f"Error: OpenAI Error: {str(e)}"

async def ask_anthropic(query: str, history: List[Dict[str, str]]) -> str:
    anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
    if not anthropic_api_key:
        logger.error("Anthropic API key not provided")
        return "Error: Anthropic API key not provided."

    # Build message history
    messages = []
    for msg in history:
        messages.append({"role": "user", "content": msg["user"]})
        if msg["bot"]:
            messages.append({"role": "assistant", "content": msg["bot"]})
    messages.append({"role": "user", "content": query})

    headers = {
        "x-api-key": anthropic_api_key,
        "anthropic-version": "2023-06-01",
        "Content-Type": "application/json"
    }

    payload = {
        "model": "claude-3-5-sonnet-20241022",
        "max_tokens": 1024,
        "messages": messages
    }

    try:
        async with httpx.AsyncClient() as client:
            logger.info(f"Sending Anthropic request: {payload}")
            response = await client.post("https://api.anthropic.com/v1/messages", headers=headers, json=payload)
        
        response.raise_for_status()
        logger.info(f"Anthropic response: {response.json()}")
        return response.json()['content'][0]['text']

    except httpx.HTTPStatusError as e:
        logger.error(f"Anthropic HTTP Status Error: {e.response.status_code}, {e.response.text}")
        return f"Error: Anthropic HTTP Status Error: {e.response.status_code}, {e.response.text}"
    except Exception as e:
        logger.error(f"Anthropic Error: {str(e)}")
        return f"Error: Anthropic Error: {str(e)}"

async def ask_gemini(query: str, history: List[Dict[str, str]]) -> str:
    gemini_api_key = os.getenv("GEMINI_API_KEY")
    if not gemini_api_key:
        logger.error("Gemini API key not provided")
        return "Error: Gemini API key not provided."

    # Gemini doesn't natively support chat history in the same way, so we concatenate history as text
    history_text = ""
    for msg in history:
        history_text += f"User: {msg['user']}\nAssistant: {msg['bot']}\n" if msg["bot"] else f"User: {msg['user']}\n"
    full_query = history_text + f"User: {query}\n"

    headers = {
        "Content-Type": "application/json"
    }

    payload = {
        "contents": [{"parts": [{"text": full_query}]}]
    }

    try:
        async with httpx.AsyncClient() as client:
            response = await client.post(
                f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key={gemini_api_key}",
                headers=headers,
                json=payload
            )
        
        response.raise_for_status()
        return response.json()['candidates'][0]['content']['parts'][0]['text']

    except httpx.HTTPStatusError as e:
        logger.error(f"Gemini HTTP Status Error: {e.response.status_code}, {e.response.text}")
        return f"Error: Gemini HTTP Status Error: {e.response.status_code}, {e.response.text}"
    except Exception as e:
        logger.error(f"Gemini Error: {str(e)}")
        return f"Error: Gemini Error: {str(e)}"

async def query_model(query: str, provider: str, history: List[Dict[str, str]]) -> AsyncGenerator[Tuple[str, List[Dict[str, str]]], None]:
    provider = provider.lower()
    response = ""
    
    if provider == "openai":
        async for chunk in ask_openai(query, history):
            response += chunk
            yield chunk, history  # Yield partial response for streaming
    elif provider == "anthropic":
        response = await ask_anthropic(query, history)
        yield response, history
    elif provider == "gemini":
        response = await ask_gemini(query, history)
        yield response, history
    else:
        response = f"Error: Unknown provider: {provider}"
        yield response, history

    # Update history with the new query and response
    updated_history = history + [{"user": query, "bot": response}]
    logger.info(f"Updated history: {updated_history}")
    yield response, updated_history  # Final yield with updated history

async def submit_query(query: str, provider: str, history: List[Dict[str, str]]) -> AsyncGenerator[Tuple[str, List[Dict[str, str]], List[Dict[str, str]]], None]:
    if not query.strip():
        yield "", history, history
        return
    
    response = ""
    async for response_chunk, updated_history in query_model(query, provider, history):
        response += response_chunk
        yield "", updated_history, updated_history  # Yield intermediate updates for streaming
    yield "", updated_history, updated_history  # Final yield with cleared query

# Gradio interface
def clear_history():
    return [], []

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Multi-Model Chat")
    gr.Markdown("Chat with OpenAI, Anthropic, or Gemini. Select a provider and start typing!")
    
    provider = gr.Dropdown(choices=["OpenAI", "Anthropic", "Gemini"], label="Select Provider", value="OpenAI")
    history_state = gr.State(value=[])
    chatbot = gr.Chatbot(label="Conversation", type="messages")
    query = gr.Textbox(label="Enter your query", placeholder="e.g., What is the capital of the United States?")
    submit_button = gr.Button("Submit")
    clear_button = gr.Button("Clear History")

    submit_button.click(
        fn=submit_query,
        inputs=[query, provider, history_state],
        outputs=[query, chatbot, history_state]
    )
    clear_button.click(
        fn=clear_history,
        inputs=[],
        outputs=[chatbot, history_state]
    )

# Launch the Gradio app
demo.launch()