Ganesh Chintalapati
Initial Gradio Multi-model selector interface
f9b91f5
raw
history blame
4.88 kB
import gradio as gr
import openai
import anthropic
import google.generativeai as genai
import os
import asyncio
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
anthropic_client = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
# Initialize conversation history
def initialize_chat():
return [{"role": "system", "content": "You are a helpful assistant."}]
# Async functions for API calls
async def get_openai_response(messages):
try:
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
temperature=0.7,
max_tokens=1000
)
)
return "ChatGPT (OpenAI)", response.choices[0].message["content"]
except Exception as e:
return "ChatGPT (OpenAI)", f"Error: {str(e)}"
async def get_claude_response(messages):
try:
user_message = messages[-1]["content"]
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: anthropic_client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
temperature=0.7,
messages=[{"role": "user", "content": user_message}]
)
)
return "Claude (Anthropic)", response.content[0].text
except Exception as e:
return "Claude (Anthropic)", f"Error: {str(e)}"
async def get_gemini_response(messages):
try:
model = genai.GenerativeModel("gemini-1.5-pro")
user_message = messages[-1]["content"]
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: model.generate_content(
user_message,
generation_config={"max_output_tokens": 1000, "temperature": 0.7}
)
)
return "Gemini (Google)", response.text
except Exception as e:
return "Gemini (Google)", f"Error: {str(e)}"
# Main async function to query selected models
async def query_selected_models(message, history, use_openai, use_claude, use_gemini):
if not any([use_openai, use_claude, use_gemini]):
return "Please select at least one model.", history
# Initialize or retrieve conversation history
if not history:
messages = initialize_chat()
else:
messages = initialize_chat() + [
{"role": "user" if i % 2 == 0 else "assistant", "content": msg[0] if i % 2 == 0 else msg[1]}
for i, msg in enumerate(history)
]
# Append new user message
messages.append({"role": "user", "content": message})
# Create tasks for selected models
tasks = []
if use_openai:
tasks.append(get_openai_response(messages))
if use_claude:
tasks.append(get_claude_response(messages))
if use_gemini:
tasks.append(get_gemini_response(messages))
# Run selected API calls concurrently
responses = await asyncio.gather(*tasks, return_exceptions=True)
# Format responses
response_text = ""
for model_name, response in responses:
response_text += f"**{model_name}**:\n{response}\n\n"
# Update history
history.append((message, response_text.strip()))
return "", history
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), title="Multi-Model AI Selector") as demo:
gr.Markdown(
"""
# Multi-Model AI Chat Interface
Select one or more models to query and enter your question below. Responses will appear in the chat window.
"""
)
# Model selection checkboxes
with gr.Row():
use_openai = gr.Checkbox(label="ChatGPT (OpenAI)", value=True)
use_claude = gr.Checkbox(label="Claude (Anthropic)", value=True)
use_gemini = gr.Checkbox(label="Gemini (Google)", value=True)
# Chat interface
chatbot = gr.Chatbot(label="Conversation", height=400)
msg = gr.Textbox(placeholder="Type your query...", label="Your Query")
with gr.Row():
submit = gr.Button("Submit Query")
clear = gr.Button("Clear Chat")
# Bind query function to submit button and textbox (Enter key)
submit.click(
fn=query_selected_models,
inputs=[msg, chatbot, use_openai, use_claude, use_gemini],
outputs=[msg, chatbot]
)
msg.submit(
fn=query_selected_models,
inputs=[msg, chatbot, use_openai, use_claude, use_gemini],
outputs=[msg, chatbot]
)
# Clear chat history
clear.click(
fn=lambda: (None, []),
inputs=None,
outputs=[msg, chatbot]
)
# Launch the app (commented out for Hugging Face deployment)
# demo.launch()