Spaces:
Sleeping
Sleeping
File size: 6,453 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
{
"cells": [
{
"cell_type": "markdown",
"id": "9964872b-225d-4ced-93e4-fc5b279ec2ed",
"metadata": {},
"source": [
"# Webpage English summarizer with user inputs (url, ollama-based LLM) "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4e49d399-d18c-4c91-8abc-cf3289e11e2f",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import requests\n",
"# from dotenv import load_dotenv\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display\n",
"from openai import OpenAI\n",
"import ollama, time\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "46e7d809-248d-41b8-80e1-36b210041581",
"metadata": {},
"outputs": [],
"source": [
"# Define system prompt.\n",
"\n",
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
"and provides a detailed summary, ignoring text that might be navigation related. \\\n",
"Respond in markdown, in English.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e8bf237f-591f-4c32-9415-5d5d4e2522b8",
"metadata": {},
"outputs": [],
"source": [
"# A function that writes a User Prompt that asks for summaries of websites:\n",
"\n",
"def user_prompt_for(website):\n",
" user_prompt = f\"You are looking at a website titled {website.title}\"\n",
" user_prompt += \"\\nThe contents of this website is as follows; \\\n",
"please provide a detailed summary of this website in markdown. \\\n",
"If it includes news or announcements, then summarize these too.\\n\\n\"\n",
" user_prompt += website.text\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7d39ee6d-c670-41ba-a0b8-debd55bda8e3",
"metadata": {},
"outputs": [],
"source": [
"# See how this function creates exactly the format above\n",
"\n",
"def messages_for(website):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43e28ff5-2def-4a47-acdd-2e06c0666956",
"metadata": {},
"outputs": [],
"source": [
"# Constants\n",
"\n",
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
"HEADERS = {\"Content-Type\": \"application/json\"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "32f4f481-81a3-479d-817b-4e754d9af46d",
"metadata": {},
"outputs": [],
"source": [
"# A class to represent a Webpage\n",
"# If you're not familiar with Classes, check out the \"Intermediate Python\" notebook\n",
"\n",
"# Some websites need you to use proper headers when fetching them:\n",
"headers = HEADERS\n",
"\n",
"class Website:\n",
"\n",
" def __init__(self, url):\n",
" \"\"\"\n",
" Create this Website object from the given url using the BeautifulSoup library\n",
" \"\"\"\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" soup = BeautifulSoup(response.content, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f81cfd17-8208-4192-a59f-485ff3ea74e4",
"metadata": {},
"outputs": [],
"source": [
"# And now: call the ollama API wrapper and return the relevant component of the response\n",
"\n",
"def summarize(url):\n",
" website = Website(url)\n",
" response = ollama.chat(\n",
" model=MODEL,\n",
" messages = messages_for(website)\n",
" )\n",
" return response['message']['content']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a9eedc6-2183-473d-84ca-b10d40e2a1e6",
"metadata": {},
"outputs": [],
"source": [
"# Ask the user the name of the url address\n",
"\n",
"url= str(input(\"\"\"\n",
"Please provide a valid url address:\n",
"https://\"\"\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5d012de2-0ef2-43db-9f51-fc7f989c3642",
"metadata": {},
"outputs": [],
"source": [
"# Ask the user to select a valid model\n",
"\n",
"MODEL= str(input(\"\"\"\n",
"Please select a LLM:\n",
"(examples: llama3.2, deepseek-r1:1.5b)\n",
"\"\"\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ac8c02e-4a62-448b-a231-8c6f65891811",
"metadata": {},
"outputs": [],
"source": [
"# Let's just make sure the model is loaded\n",
"\n",
"!ollama pull {MODEL}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0544541f-11a8-4eb7-8eb6-bc032ed6d0d1",
"metadata": {},
"outputs": [],
"source": [
"print('url: https://{0}\\nModel= {1}'.format(url, MODEL))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "45518950-f2c9-43af-b897-4fe8fe48dfd8",
"metadata": {},
"outputs": [],
"source": [
"summary = summarize('https://'+ url)\n",
"for summ in tqdm(summary):\n",
" time.sleep(0.01)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "02c0c15e-216d-47c7-843d-ac27af02820b",
"metadata": {},
"outputs": [],
"source": [
"display(Markdown(summary))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "985a3689-5827-4b15-b8d5-276f9b292afd",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|