File size: 8,681 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "0e5dc476-e3c9-49bd-934a-35dbe0d55b13",
   "metadata": {},
   "source": [
    "# End of week 1 exercise (with user input(question, model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "353fba18-a9b4-4ba8-be7e-f3e3c37521ff",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import requests\n",
    "from dotenv import load_dotenv\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display, update_display\n",
    "from openai import OpenAI\n",
    "import ollama"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "be2b859d-b3d2-41f7-8666-28ecde26e3b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# set up environment and constants\n",
    "load_dotenv(override=True)\n",
    "api_key = os.getenv('OPENAI_API_KEY')\n",
    "\n",
    "if api_key and api_key.startswith('sk-proj-') and len(api_key)>10:\n",
    "    print(\"API key looks good so far\")\n",
    "else:\n",
    "    print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c1b2b694-11a1-4d2a-8e34-d1fb02617fa3",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = \"You are an expert coder with educational skills for beginners. \\\n",
    "You are able to explain, debbug or generate code in Python, R or bash, and to provide examples of use case if applicable. \\\n",
    "Please add references to relevant sources if available. If not, do not invent.\\n\"\n",
    "system_prompt += \"this is an example of a response:\"\n",
    "system_prompt += \"\"\"\n",
    "Sure! Here’s the explanation in plain text format, suitable for Markdown:\n",
    "\n",
    "# Explanation of the Code\n",
    "\n",
    "### Code:\n",
    "```python\n",
    "full_name = lambda first, last: f'Full name: {first.title()} {last.title()}'\n",
    "```\n",
    "\n",
    "### Explanation:\n",
    "\n",
    "1. **Lambda Function:**\n",
    "   - The keyword `lambda` is used to create a small, one-line anonymous function (a function without a name).\n",
    "   - It takes two parameters: `first` (for the first name) and `last` (for the last name).\n",
    "\n",
    "2. **String Formatting (`f-string`):**\n",
    "   - `f'Full name: {first.title()} {last.title()}'` is a formatted string (f-string).\n",
    "   - It inserts the values of `first` and `last` into the string while applying `.title()` to capitalize the first letter of each name.\n",
    "\n",
    "3. **Assigning the Function:**\n",
    "   - The lambda function is assigned to the variable `full_name`, so we can use `full_name()` like a regular function.\n",
    "\n",
    "### How to Use It:\n",
    "Now, let’s call this function and see what it does.\n",
    "\n",
    "```python\n",
    "print(full_name(\"john\", \"doe\"))\n",
    "```\n",
    "\n",
    "#### Output:\n",
    "```\n",
    "Full name: John Doe\n",
    "```\n",
    "\n",
    "### What Happens:\n",
    "- `\"john\"` becomes `\"John\"` (because `.title()` capitalizes the first letter).\n",
    "- `\"doe\"` becomes `\"Doe\"`.\n",
    "- The output is `\"Full name: John Doe\"`.\n",
    "\n",
    "### Summary:\n",
    "This is a simple way to create a function that formats a full name while ensuring proper capitalization. You could write the same function using `def` like this:\n",
    "\n",
    "```python\n",
    "def full_name(first, last):\n",
    "    return f'Full name: {first.title()} {last.title()}'\n",
    "```\n",
    "\n",
    "Both versions work the same way, but the `lambda` version is more compact.\n",
    "\n",
    "### Reference(s):\n",
    "To deepen your understanding of the code snippet involving Python's lambda functions here is a resource you might find helpful:\n",
    "\n",
    "Ref. **Python Lambda Functions:**\n",
    "   - The official Python documentation provides an in-depth explanation of lambda expressions, including their syntax and use cases.\n",
    "     - [Lambda Expressions](https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions)\n",
    "\n",
    "```\n",
    "You can copy and paste this into any Markdown file or viewer. Let me know if you need further modifications! 😊\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f7225ab0-5ade-4c93-839c-3c80b0b23c37",
   "metadata": {},
   "outputs": [],
   "source": [
    "# display(Markdown(system_prompt))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "07fa2506-4b24-4a53-9f3f-500b4cbcb10a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# user question\n",
    "default_question= \"\"\"\n",
    "Please explain what this code does and why:\n",
    "yield from {book.get('author') from book in books if book.get('author')}\n",
    "\"\"\"\n",
    "user_question= str(input(\"What code do you want me to explain?/n(Press 'Enter' for an example)\"))\n",
    "\n",
    "if user_question== '':\n",
    "    question= default_question\n",
    "    print(default_question)\n",
    "else:\n",
    "    question= \"Please explain what this code does and why:\\n\" + user_question"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a6749065-fb8a-4f9f-8297-3cd33abd97bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(question)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f48df06c-edb7-4a05-9e56-910854dad0c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# user model\n",
    "model_number= input(\"\"\"\n",
    "Please enter the number of the model you want to use from the list below:\n",
    "1 GPT-4o Mini\n",
    "2 Llama 3.2\n",
    "3 DeepSeek R1\n",
    "4 Qwen 2.5\n",
    "\"\"\")\n",
    "try:\n",
    "    if int(model_number)==1:\n",
    "        model= 'gpt-4o-mini'\n",
    "    elif int(model_number)==2:\n",
    "        model= 'llama3.2'\n",
    "    elif int(model_number)==3:\n",
    "        model= 'deepseek-r1:1.5b'\n",
    "    elif int(model_number)==4:\n",
    "        model= 'qwen2.5:3b'\n",
    "    else:\n",
    "        model= ''\n",
    "        print(\"please provide only a number from the list\")\n",
    "except:\n",
    "    model=''\n",
    "    print(\"Please provide a number or press 'Enter' to finish\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aeb6e4e5-fb63-4192-bb74-0b015dfedfb7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# print(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fffa6021-d3f8-4855-a694-bed6d651791f",
   "metadata": {},
   "outputs": [],
   "source": [
    "messages=[\n",
    "    {\"role\": \"system\", \"content\": system_prompt},\n",
    "    {\"role\": \"user\", \"content\": question}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "835374a4-3df5-4f28-82e3-6bc70514df16",
   "metadata": {},
   "outputs": [],
   "source": [
    "if int(model_number)==1:\n",
    "    openai= OpenAI()\n",
    "    stream = openai.chat.completions.create(\n",
    "        model=model,\n",
    "        messages=messages,\n",
    "        stream= True\n",
    "        )\n",
    "\n",
    "    response = \"\"\n",
    "    print(\"The following answer will be generated by {0} LLM\".format(model))\n",
    "    display_handle = display(Markdown(\"\"), display_id=True)\n",
    "    for chunk in stream:\n",
    "        response += chunk.choices[0].delta.content or ''\n",
    "        response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
    "        update_display(Markdown(response), display_id=display_handle.display_id)\n",
    "elif int(model_number)==2 or 3 or 4:\n",
    "    !ollama pull {model}\n",
    "    print(\"\\n\\nThe following answer will be generated by {0} LLM\\n\\n\".format(model))\n",
    "    response = ollama.chat(\n",
    "        model=model,\n",
    "        messages = messages)\n",
    "    result= response['message']['content']\n",
    "    display(Markdown(result))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}