File size: 17,973 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "d15d8294-3328-4e07-ad16-8a03e9bbfdb9",
   "metadata": {},
   "source": [
    "## DAY1 LLM Project with GROQ!\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4e2a9393-7767-488e-a8bf-27c12dca35bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import requests\n",
    "from dotenv import load_dotenv\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display\n",
    "from groq import Groq\n",
    "\n",
    "# If you get an error running this cell, then please head over to the troubleshooting notebook!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5d899ad6-1428-481b-b308-750308d80442",
   "metadata": {},
   "source": [
    "If you are getting error ModuleNotFoundError: No module named 'groq' follow below steps.\n",
    "\n",
    "1. Activate llms enviornment from Anaconda, so that  (llms) is showing in your prompt, as this is the environment where the package will get installed.Install pip here. \n",
    "\n",
    "(base) PS C:\\Users\\test\\OneDrive\\Desktop\\AI\\projects\\llm_engineering> conda activate llms\n",
    "(llms) PS C:\\Users\\test\\OneDrive\\Desktop\\AI\\projects\\llm_engineering> pip install groq\n",
    "\n",
    "\n",
    "2. After you install a new package, you'd need to restart the Kernel in jupyter lab for each notebook (Kernel >> Restart Kernel and Clear Values Of All Outputs).\n",
    "\n",
    "You can also run this command in jupyter lab to see whether it's installed:\n",
    "\n",
    "!pip show groq\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "99c0c3c9-fa5e-405e-8453-2a557dc60c09",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip show groq"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6900b2a8-6384-4316-8aaa-5e519fca4254",
   "metadata": {},
   "source": [
    "# Connecting to GROQ\n",
    "\n",
    "The next cell is where we load in the environment variables in your `.env` file and connect to GROQ.\n",
    "\n",
    ".env file should have below entry\n",
    "\n",
    "GROQ_API_KEY=gsk_xxxxxx\n",
    "\n",
    "GROQ keys can be configired by logging to below link\n",
    "https://console.groq.com/keys\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7b87cadb-d513-4303-baee-a37b6f938e4d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables in a file called .env\n",
    "\n",
    "load_dotenv(override=True)\n",
    "api_key = os.getenv('GROQ_API_KEY')\n",
    "\n",
    "# Check the key\n",
    "\n",
    "if not api_key:\n",
    "    print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
    "elif not api_key.startswith(\"gsk_\"):\n",
    "    print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
    "elif api_key.strip() != api_key:\n",
    "    print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
    "else:\n",
    "    print(\"API key found and looks good so far!\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "019974d9-f3ad-4a8a-b5f9-0a3719aea2d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "groq = Groq()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "442fc84b-0815-4f40-99ab-d9a5da6bda91",
   "metadata": {},
   "source": [
    "# Let's make a quick call to a Frontier model to get started, as a preview!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a58394bf-1e45-46af-9bfd-01e24da6f49a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# To give you a preview -- calling Groq with these messages is this easy. Any problems, head over to the Troubleshooting notebook.\n",
    "\n",
    "message = \"Hello, GPT! This is my first ever message to you! Hi!\"\n",
    "response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=[{\"role\":\"user\", \"content\":message}])\n",
    "print(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2aa190e5-cb31-456a-96cc-db109919cd78",
   "metadata": {},
   "source": [
    "## OK onwards with our first project"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c5e793b2-6775-426a-a139-4848291d0463",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A class to represent a Webpage\n",
    "# If you're not familiar with Classes, check out the \"Intermediate Python\" notebook\n",
    "\n",
    "# Some websites need you to use proper headers when fetching them:\n",
    "headers = {\n",
    " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
    "}\n",
    "\n",
    "class Website:\n",
    "\n",
    "    def __init__(self, url):\n",
    "        \"\"\"\n",
    "        Create this Website object from the given url using the BeautifulSoup library\n",
    "        \"\"\"\n",
    "        self.url = url\n",
    "        response = requests.get(url, headers=headers)\n",
    "        soup = BeautifulSoup(response.content, 'html.parser')\n",
    "        self.title = soup.title.string if soup.title else \"No title found\"\n",
    "        for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
    "            irrelevant.decompose()\n",
    "        self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2ef960cf-6dc2-4cda-afb3-b38be12f4c97",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's try one out. Change the website and add print statements to follow along.\n",
    "\n",
    "ed = Website(\"https://edwarddonner.com\")\n",
    "print(ed.title)\n",
    "print(ed.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a478a0c-2c53-48ff-869c-4d08199931e1",
   "metadata": {},
   "source": [
    "## Types of prompts\n",
    "\n",
    "You may know this already - but if not, you will get very familiar with it!\n",
    "\n",
    "Models like GPT4o have been trained to receive instructions in a particular way.\n",
    "\n",
    "They expect to receive:\n",
    "\n",
    "**A system prompt** that tells them what task they are performing and what tone they should use\n",
    "\n",
    "**A user prompt** -- the conversation starter that they should reply to"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "abdb8417-c5dc-44bc-9bee-2e059d162699",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define our system prompt - you can experiment with this later, changing the last sentence to 'Respond in markdown in Spanish.\"\n",
    "\n",
    "system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
    "and provides a short summary, ignoring text that might be navigation related. \\\n",
    "Respond in markdown.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f0275b1b-7cfe-4f9d-abfa-7650d378da0c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A function that writes a User Prompt that asks for summaries of websites:\n",
    "\n",
    "def user_prompt_for(website):\n",
    "    user_prompt = f\"You are looking at a website titled {website.title}\"\n",
    "    user_prompt += \"\\nThe contents of this website is as follows; \\\n",
    "please provide a short summary of this website in markdown. \\\n",
    "If it includes news or announcements, then summarize these too.\\n\\n\"\n",
    "    user_prompt += website.text\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "26448ec4-5c00-4204-baec-7df91d11ff2e",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(user_prompt_for(ed))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ea211b5f-28e1-4a86-8e52-c0b7677cadcc",
   "metadata": {},
   "source": [
    "## Messages\n",
    "\n",
    "Similar to OPENAI GROQ APIs share this structure:\n",
    "\n",
    "```\n",
    "[\n",
    "    {\"role\": \"system\", \"content\": \"system message goes here\"},\n",
    "    {\"role\": \"user\", \"content\": \"user message goes here\"}\n",
    "]\n",
    "\n",
    "To give you a preview, the next 2 cells make a rather simple call - we won't stretch the might GPT (yet!)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f25dcd35-0cd0-4235-9f64-ac37ed9eaaa5",
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = [\n",
    "    {\"role\": \"system\", \"content\": \"You are a snarky assistant\"},\n",
    "    {\"role\": \"user\", \"content\": \"What is 2 + 2?\"}\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "21ed95c5-7001-47de-a36d-1d6673b403ce",
   "metadata": {},
   "outputs": [],
   "source": [
    "# To give you a preview -- calling Groq with system and user messages:\n",
    "\n",
    "response = groq.chat.completions.create(model=\"llama-3.3-70b-versatile\", messages=messages)\n",
    "print(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d06e8d78-ce4c-4b05-aa8e-17050c82bb47",
   "metadata": {},
   "source": [
    "## And now let's build useful messages for LLAMA3.3, using a function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0134dfa4-8299-48b5-b444-f2a8c3403c88",
   "metadata": {},
   "outputs": [],
   "source": [
    "# See how this function creates exactly the format above\n",
    "\n",
    "def messages_for(website):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_prompt},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "36478464-39ee-485c-9f3f-6a4e458dbc9c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Try this out, and then try for a few more websites\n",
    "\n",
    "messages_for(ed)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "16f49d46-bf55-4c3e-928f-68fc0bf715b0",
   "metadata": {},
   "source": [
    "## Time to bring it together - the API for GROQ is very simple!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "905b9919-aba7-45b5-ae65-81b3d1d78e34",
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now: call the GROQ API\n",
    "\n",
    "def summarize(url):\n",
    "    website = Website(url)\n",
    "    response = groq.chat.completions.create(\n",
    "        model = \"llama-3.3-70b-versatile\",\n",
    "        messages = messages_for(website)\n",
    "    )\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "05e38d41-dfa4-4b20-9c96-c46ea75d9fb5",
   "metadata": {},
   "outputs": [],
   "source": [
    "summarize(\"https://edwarddonner.com\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3d926d59-450e-4609-92ba-2d6f244f1342",
   "metadata": {},
   "outputs": [],
   "source": [
    "# A function to display this nicely in the Jupyter output, using markdown\n",
    "\n",
    "def display_summary(url):\n",
    "    summary = summarize(url)\n",
    "    display(Markdown(summary))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3018853a-445f-41ff-9560-d925d1774b2f",
   "metadata": {},
   "outputs": [],
   "source": [
    "display_summary(\"https://edwarddonner.com\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b3bcf6f4-adce-45e9-97ad-d9a5d7a3a624",
   "metadata": {},
   "source": [
    "# Let's try more websites\n",
    "\n",
    "Note that this will only work on websites that can be scraped using this simplistic approach.\n",
    "\n",
    "Websites that are rendered with Javascript, like React apps, won't show up. See the community-contributions folder for a Selenium implementation that gets around this. You'll need to read up on installing Selenium (ask ChatGPT!)\n",
    "\n",
    "Also Websites protected with CloudFront (and similar) may give 403 errors - many thanks Andy J for pointing this out.\n",
    "\n",
    "But many websites will work just fine!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45d83403-a24c-44b5-84ac-961449b4008f",
   "metadata": {},
   "outputs": [],
   "source": [
    "display_summary(\"https://cnn.com\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "75e9fd40-b354-4341-991e-863ef2e59db7",
   "metadata": {},
   "outputs": [],
   "source": [
    "display_summary(\"https://anthropic.com\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c951be1a-7f1b-448f-af1f-845978e47e2c",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../business.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#181;\">Business applications</h2>\n",
    "            <span style=\"color:#181;\">In this exercise, you experienced calling the Cloud API of a Frontier Model (a leading model at the frontier of AI) for the first time. We will be using APIs like OpenAI at many stages in the course, in addition to building our own LLMs.\n",
    "\n",
    "More specifically, we've applied this to Summarization - a classic Gen AI use case to make a summary. This can be applied to any business vertical - summarizing the news, summarizing financial performance, summarizing a resume in a cover letter - the applications are limitless. Consider how you could apply Summarization in your business, and try prototyping a solution.</span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>\n",
    "\n",
    "<table style=\"margin: 0; text-align: left;\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../important.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#900;\">Before you continue - now try yourself</h2>\n",
    "            <span style=\"color:#900;\">Use the cell below to make your own simple commercial example. Stick with the summarization use case for now. Here's an idea: write something that will take the contents of an email, and will suggest an appropriate short subject line for the email. That's the kind of feature that might be built into a commercial email tool.</span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "00743dac-0e70-45b7-879a-d7293a6f68a6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 1: Create your prompts\n",
    "\n",
    "system_prompt = \"something here\"\n",
    "user_prompt = \"\"\"\n",
    "    Lots of text\n",
    "    Can be pasted here\n",
    "\"\"\"\n",
    "\n",
    "# Step 2: Make the messages list\n",
    "\n",
    "messages = [] # fill this in\n",
    "\n",
    "# Step 3: Call OpenAI\n",
    "\n",
    "response =\n",
    "\n",
    "# Step 4: print the result\n",
    "\n",
    "print("
   ]
  },
  {
   "cell_type": "markdown",
   "id": "36ed9f14-b349-40e9-a42c-b367e77f8bda",
   "metadata": {},
   "source": [
    "## An extra exercise for those who enjoy web scraping\n",
    "\n",
    "You may notice that if you try `display_summary(\"https://openai.com\")` - it doesn't work! That's because OpenAI has a fancy website that uses Javascript. There are many ways around this that some of you might be familiar with. For example, Selenium is a hugely popular framework that runs a browser behind the scenes, renders the page, and allows you to query it. If you have experience with Selenium, Playwright or similar, then feel free to improve the Website class to use them. In the community-contributions folder, you'll find an example Selenium solution from a student (thank you!)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "eeab24dc-5f90-4570-b542-b0585aca3eb6",
   "metadata": {},
   "source": [
    "# Sharing your code\n",
    "\n",
    "I'd love it if you share your code afterwards so I can share it with others! You'll notice that some students have already made changes (including a Selenium implementation) which you will find in the community-contributions folder. If you'd like add your changes to that folder, submit a Pull Request with your new versions in that folder and I'll merge your changes.\n",
    "\n",
    "If you're not an expert with git (and I am not!) then GPT has given some nice instructions on how to submit a Pull Request. It's a bit of an involved process, but once you've done it once it's pretty clear. As a pro-tip: it's best if you clear the outputs of your Jupyter notebooks (Edit >> Clean outputs of all cells, and then Save) for clean notebooks.\n",
    "\n",
    "Here are good instructions courtesy of an AI friend:  \n",
    "https://chatgpt.com/share/677a9cb5-c64c-8012-99e0-e06e88afd293"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}