File size: 15,072 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "35f59eb3",
   "metadata": {},
   "source": [
    "# Pluggable Web Scraper and Summarizer with Interface-Based Design\n",
    "\n",
    "This system implements a **pluggable architecture** for web scraping and summarization, built on interface-based design using Python’s `Protocol` types. Each stage of the pipeline—content fetching, HTML parsing, and LLM-based summarization—is defined through explicit structural contracts rather than concrete implementations. Components like `RequestsFetcher`, `RobustSoupParser`, and `OllamaClient` fulfill these protocols and can be swapped independently, enabling flexibility, testing, and future extension without modifying core logic. Immutable data models (`@dataclass(frozen=True)`) enforce data integrity throughout the pipeline, while the design cleanly separates concerns across modules to support maintainability and modular growth."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "f42e6d21",
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass\n",
    "from typing import Protocol, Optional, List, Dict, Tuple\n",
    "import requests\n",
    "from bs4 import BeautifulSoup\n",
    "from IPython.display import Markdown, display\n",
    "from openai import OpenAI\n",
    "import logging\n",
    "import chardet"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "65c17368",
   "metadata": {},
   "source": [
    "# Configuration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "eb0904d7",
   "metadata": {},
   "outputs": [],
   "source": [
    "logging.basicConfig(level=logging.INFO)\n",
    "logger = logging.getLogger(__name__)\n",
    "\n",
    "HEADERS = {\n",
    "    \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36\",\n",
    "}\n",
    "DEFAULT_TIMEOUT = 10\n",
    "UNWANTED_TAGS = [\"script\", \"style\", \"nav\", \"header\", \"footer\", \"img\", \"input\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8110aa46",
   "metadata": {},
   "source": [
    "# Data Models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "cdb6c990",
   "metadata": {},
   "outputs": [],
   "source": [
    "@dataclass(frozen=True)\n",
    "class RawResponse:\n",
    "    content: bytes\n",
    "    status_code: int\n",
    "    encoding: str\n",
    "    headers: Dict[str, str]\n",
    "    elapsed: float\n",
    "    final_url: str\n",
    "\n",
    "@dataclass(frozen=True)\n",
    "class WebsiteContent:\n",
    "    url: str\n",
    "    title: str\n",
    "    text: str\n",
    "    status_code: int\n",
    "    response_time: float\n",
    "\n",
    "@dataclass(frozen=True)\n",
    "class LLMResponse:\n",
    "    content: str\n",
    "    model: str\n",
    "    tokens_used: int"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "87b2a97a",
   "metadata": {},
   "source": [
    "# Protocols"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "3070eac2",
   "metadata": {},
   "outputs": [],
   "source": [
    "class ContentFetcher(Protocol):\n",
    "    def fetch(self, url: str) -> RawResponse: ...\n",
    "\n",
    "class ContentParser(Protocol):\n",
    "    def parse(self, response: RawResponse) -> WebsiteContent: ...\n",
    "\n",
    "class LLMClient(Protocol):\n",
    "    def generate(self, messages: List[Dict[str, str]], model: str) -> LLMResponse: ...\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "553daa11",
   "metadata": {},
   "source": [
    "# Implementations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "1a42bed9",
   "metadata": {},
   "outputs": [],
   "source": [
    "class RequestsFetcher:\n",
    "    def __init__(self, \n",
    "                 headers: Dict[str, str] = HEADERS,\n",
    "                 timeout: int = DEFAULT_TIMEOUT,\n",
    "                 max_redirects: int = 5):\n",
    "        self.headers = headers\n",
    "        self.timeout = timeout\n",
    "        self.max_redirects = max_redirects\n",
    "\n",
    "    def fetch(self, url: str) -> RawResponse:\n",
    "        logger.info(f\"Fetching content from {url}\")\n",
    "        try:\n",
    "            response = requests.get(\n",
    "                url,\n",
    "                headers=self.headers,\n",
    "                timeout=self.timeout,\n",
    "                allow_redirects=True,\n",
    "                stream=False  # Prevent partial content issues\n",
    "            )\n",
    "            response.raise_for_status()\n",
    "            \n",
    "            return RawResponse(\n",
    "                content=response.content,\n",
    "                status_code=response.status_code,\n",
    "                encoding=response.encoding,\n",
    "                headers=dict(response.headers),\n",
    "                elapsed=response.elapsed.total_seconds(),\n",
    "                final_url=response.url\n",
    "            )\n",
    "        except requests.exceptions.RequestException as e:\n",
    "            logger.error(f\"Failed to fetch {url}: {str(e)}\")\n",
    "            raise\n",
    "\n",
    "class RobustSoupParser:\n",
    "    def __init__(self, unwanted_tags: Tuple[str] = UNWANTED_TAGS):\n",
    "        self.unwanted_tags = unwanted_tags\n",
    "\n",
    "    def parse(self, response: RawResponse) -> WebsiteContent:\n",
    "        logger.info(f\"Parsing content from {response.final_url}\")\n",
    "        \n",
    "        # Detect encoding if not provided\n",
    "        encoding = response.encoding or self._detect_encoding(response.content)\n",
    "        \n",
    "        try:\n",
    "            decoded_content = response.content.decode(encoding, errors='replace')\n",
    "            soup = BeautifulSoup(decoded_content, 'html.parser')\n",
    "        except Exception as e:\n",
    "            logger.error(f\"Failed to parse content: {str(e)}\")\n",
    "            raise\n",
    "\n",
    "        return WebsiteContent(\n",
    "            url=response.final_url,\n",
    "            title=self._extract_title(soup),\n",
    "            text=self._clean_content(soup),\n",
    "            status_code=response.status_code,\n",
    "            response_time=response.elapsed\n",
    "        )\n",
    "\n",
    "    def _detect_encoding(self, content: bytes) -> str:\n",
    "        result = chardet.detect(content)\n",
    "        return result['encoding'] or 'utf-8'\n",
    "\n",
    "    def _extract_title(self, soup: BeautifulSoup) -> str:\n",
    "        title_tag = soup.find('title')\n",
    "        return title_tag.text.strip() if title_tag else \"Untitled\"\n",
    "\n",
    "    def _clean_content(self, soup: BeautifulSoup) -> str:\n",
    "        # Remove unwanted tags\n",
    "        for tag in self.unwanted_tags:\n",
    "            for element in soup.find_all(tag):\n",
    "                element.decompose()\n",
    "\n",
    "        # Extract text with semantic line breaks\n",
    "        text = '\\n\\n'.join([\n",
    "            element.get_text().strip()\n",
    "            for element in soup.find_all(['p', 'h1', 'h2', 'h3', 'article'])\n",
    "            if element.get_text().strip()\n",
    "        ])\n",
    "        \n",
    "        return text or \"No readable content found\"\n",
    "\n",
    "class OllamaClient:\n",
    "    def __init__(self, \n",
    "                 base_url: str = 'http://localhost:11434/v1',\n",
    "                 api_key: str = 'ollama',\n",
    "                 max_retries: int = 3):\n",
    "        self.client = OpenAI(base_url=base_url, api_key=api_key)\n",
    "        self.max_retries = max_retries\n",
    "\n",
    "    def generate(self, \n",
    "                messages: List[Dict[str, str]], \n",
    "                model: str = \"llama3.2\") -> LLMResponse:\n",
    "        logger.info(f\"Generating summary with {model}\")\n",
    "        \n",
    "        for attempt in range(self.max_retries):\n",
    "            try:\n",
    "                response = self.client.chat.completions.create(\n",
    "                    model=model,\n",
    "                    messages=messages\n",
    "                )\n",
    "                return LLMResponse(\n",
    "                    content=response.choices[0].message.content,\n",
    "                    model=model,\n",
    "                    tokens_used=response.usage.total_tokens\n",
    "                )\n",
    "            except Exception as e:\n",
    "                if attempt == self.max_retries - 1:\n",
    "                    logger.error(f\"Failed after {self.max_retries} attempts: {str(e)}\")\n",
    "                    raise\n",
    "                logger.warning(f\"Retry {attempt + 1}/{self.max_retries}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1805d4f8",
   "metadata": {},
   "source": [
    "# Core Pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "a985806a",
   "metadata": {},
   "outputs": [],
   "source": [
    "class SummarizationPipeline:\n",
    "    SYSTEM_PROMPT = \"\"\"You are a professional web content analyst. Provide a structured markdown summary containing:\n",
    "- Key points\n",
    "- Notable statistics\n",
    "- Important names/dates\n",
    "- Actionable insights\n",
    "Avoid navigation content and marketing fluff.\"\"\"\n",
    "\n",
    "    def __init__(self,\n",
    "                fetcher: ContentFetcher,\n",
    "                parser: ContentParser,\n",
    "                llm_client: LLMClient):\n",
    "        self.fetcher = fetcher\n",
    "        self.parser = parser\n",
    "        self.llm_client = llm_client\n",
    "\n",
    "    def summarize(self, url: str, model: str = \"llama3.2\") -> LLMResponse:\n",
    "        raw_response = self.fetcher.fetch(url)\n",
    "        website_content = self.parser.parse(raw_response)\n",
    "        messages = self._build_messages(website_content)\n",
    "        return self.llm_client.generate(messages, model)\n",
    "\n",
    "    def _build_messages(self, content: WebsiteContent) -> List[Dict[str, str]]:\n",
    "        user_prompt = f\"\"\"**Website Analysis Request**\n",
    "URL: {content.url}\n",
    "Title: {content.title}\n",
    "\n",
    "Content:\n",
    "{content.text[:8000]}  # Truncate to stay within context window\n",
    "\n",
    "Please provide a comprehensive summary following the guidelines above.\"\"\"\n",
    "        \n",
    "        return [\n",
    "            {\"role\": \"system\", \"content\": self.SYSTEM_PROMPT},\n",
    "            {\"role\": \"user\", \"content\": user_prompt}\n",
    "        ]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "41832e20",
   "metadata": {},
   "source": [
    "# Factory & Presentation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "656b8dd4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_default_pipeline() -> SummarizationPipeline:\n",
    "    return SummarizationPipeline(\n",
    "        fetcher=RequestsFetcher(),\n",
    "        parser=RobustSoupParser(),\n",
    "        llm_client=OllamaClient()\n",
    "    )\n",
    "\n",
    "class JupyterPresenter:\n",
    "    @staticmethod\n",
    "    def display(response: LLMResponse) -> None:\n",
    "        display(Markdown(f\"\"\"\n",
    "## Summary Results\n",
    "**Model**: {response.model}  \n",
    "**Tokens Used**: {response.tokens_used}  \n",
    "**Summary**:\n",
    "{response.content}\n",
    "        \"\"\"))\n",
    "        "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "76339788",
   "metadata": {},
   "source": [
    "# Execution"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "69304964",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:__main__:Fetching content from https://edwarddonner.com\n",
      "INFO:__main__:Parsing content from https://edwarddonner.com/\n",
      "INFO:__main__:Generating summary with llama3.2\n",
      "INFO:httpx:HTTP Request: POST http://localhost:11434/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "data": {
      "text/markdown": [
       "\n",
       "## Summary Results\n",
       "**Model**: llama3.2  \n",
       "**Tokens Used**: 630  \n",
       "**Summary**:\n",
       "**Website Analysis Summary**\n",
       "==========================\n",
       "\n",
       "### Key Points\n",
       "\n",
       "* The website belongs to Edward Donner, a co-founder and CTO of Nebula.io, an AI startup applying LLMs for talent discovery.\n",
       "* The website showcases Donner's interests in code writing, music production, and technology.\n",
       "* It announces the launch of The Complete Agentic AI Engineering Course and provides resources on LLM workshop and mastering AI.\n",
       "\n",
       "### Notable Statistics\n",
       "\n",
       "* None mentioned, as there are no explicit statistics provided on the website.\n",
       "\n",
       "### Important Names/Dates\n",
       "\n",
       "* Edward Donner: Website owner and CTO of Nebula.io.\n",
       "* 2021: Year in which AI startup untapt was acquired by an unknown party (no information about the acquirer is available).\n",
       "\n",
       "### Actionable Insights\n",
       "\n",
       "* The website appears to be a personal page showcasing Donner's expertise in AI, LLMs, and talent discovery. It may serve as a way for him to establish his professional brand and network with potential clients or collaborators.\n",
       "* Offering resources and courses, such as \"The Complete Agentic AI Engineering Course\" and workshops, can help attract visitors and demonstrate the company's capabilities.\n",
       "* Subscribing to the website might offer exclusive access to updates, insights on LLMs and talent discovery, and potentially lucrative career opportunities.\n",
       "        "
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "pipeline = create_default_pipeline()\n",
    "try:\n",
    "    response = pipeline.summarize(\"https://edwarddonner.com\")\n",
    "    JupyterPresenter.display(response)\n",
    "except Exception as e:\n",
    "    logger.error(f\"Summarization failed: {str(e)}\")\n",
    "    display(Markdown(\"## Error\\nUnable to generate summary. Please check the URL and try again.\"))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}