File size: 14,163 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "yqlQTsxNdKrN"
   },
   "outputs": [],
   "source": [
    "!pip install -q requests torch bitsandbytes transformers sentencepiece accelerate openai httpx==0.27.2 gradio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "eyfvQrLxdkGT"
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import requests\n",
    "from IPython.display import Markdown, display, update_display\n",
    "from openai import OpenAI\n",
    "from google.colab import drive\n",
    "from huggingface_hub import login\n",
    "from google.colab import userdata\n",
    "from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig\n",
    "import torch\n",
    "import gradio as gr\n",
    "import re"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "WW-cSZk7dnp6"
   },
   "outputs": [],
   "source": [
    "# one can always add more models, of course\n",
    "\n",
    "LLAMA = \"meta-llama/Meta-Llama-3.1-8B-Instruct\"\n",
    "OPENAI_MODEL = \"gpt-4o-mini\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "XG7Iam6Rdw8F"
   },
   "outputs": [],
   "source": [
    "hf_token = userdata.get('HF_TOKEN')\n",
    "login(hf_token, add_to_git_credential=True)\n",
    "openai_api_key = userdata.get('OPENAI_API_KEY')\n",
    "openai = OpenAI(api_key=openai_api_key)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "Ov7WSdx9dzSt"
   },
   "outputs": [],
   "source": [
    "force_dark_mode = \"\"\"\n",
    "function refresh() {\n",
    "    const url = new URL(window.location);\n",
    "    if (url.searchParams.get('__theme') !== 'dark') {\n",
    "        url.searchParams.set('__theme', 'dark');\n",
    "        window.location.href = url.href;\n",
    "    }\n",
    "}\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "bEF8w_Mdd2Nb"
   },
   "outputs": [],
   "source": [
    "def dataset_generator(model, nature, shots, volume, language):\n",
    "\n",
    "  examples = \"Instruction: 'Make a random sentence.'\\nAnswer: 'When I got home last night, I couldn't believe my eyes: All the pineapples had been removed from the pizza.'\"\n",
    "  system_message = \"You are a random sentence generator. Generate 10 diverse English sentences.\"\n",
    "  user_prompt = f\"Generate 10 random English sentences, like so:\\n{examples}\"\n",
    "  sentences = \"\"\n",
    "\n",
    "  if language == \"English\":\n",
    "\n",
    "    for shot in list(shots.keys()):\n",
    "      examples += f\"\\nExample instruction: '{shot}'\\nExample answer: '{shots[shot]}'\\n\"\n",
    "\n",
    "    system_message = f\"You are a state-of-the art linguistic dataset compiler. You are given a 'Type' of sentence to create. \\\n",
    "Within the bounds of that type, create {volume} diverse sentences with differing structures and lengths. Make the sentences plausible, \\\n",
    "but be creative in filling them with random concrete information, names, and data. Here are some examples for how to go about that:\\n{examples}\\n\\\n",
    "Just output one sentence per line. Do not comment or format yor output in any way, shape, or form.\"\n",
    "\n",
    "    user_prompt = f\"Generate {volume} English sentences of the following Type: {nature}. Just output one sentence per line. \\\n",
    "Do not comment or format yor output in any way, shape, or form.\"\n",
    "\n",
    "  elif language == \"German\":\n",
    "\n",
    "    for shot in list(shots.keys()):\n",
    "      examples += f\"\\nAnweisung: '{shot}'\\nAntwort: '{shots[shot]}'\\n\"\n",
    "\n",
    "    system_message = f\"Du bist ein weltklasse Datensatz-Sammler für Sprachdaten. Du erhältst einen 'Typ' von Sätzen, die du erstellen sollst. \\\n",
    "Im Rahmen dieses Typs, generiere {volume} untereinander verschiedene Sätze mit unterschiedlichen Satzlängen und -strukturen. Mache die Beispielsätze \\\n",
    "plausibel, aber fülle sie kreativ mit willkürlichen Informationen, Namen, und Daten aller Art. Hier sind ein paar Beispiel, wie du vorgehen sollst:\\n{examples}\\n\\\n",
    "Gib einfach einen Satz pro Zeile aus. Kommentiere oder formatiere deine Antwort in keinster Weise.\"\n",
    "\n",
    "    user_prompt = f\"Generiere {volume} deutsche Sätze des folgenden Typs: {nature}. Gib einfach einen Satz pro Zeile aus. \\\n",
    "Kommentiere oder formatiere deine Antwort in keiner Weise.\"\n",
    "\n",
    "  elif language == \"French\":\n",
    "\n",
    "    for shot in list(shots.keys()):\n",
    "      examples += f\"\\nConsigne: '{shot}'\\nRéponse: '{shots[shot]}'\\n\"\n",
    "\n",
    "    system_message = f\"Tu es un outil linguistique de pointe, à savoir, un genérateur de données linguistiques. Tu seras assigné un 'Type' de phrases à créer. \\\n",
    "Dans le cadre de ce type-là, crée {volume} phrases diverses, avec des structures et longueurs qui varient. Génère des phrases qui soient plausibles, \\\n",
    "mais sois créatif, et sers-toi de données, noms, et informations aléatoires pour rendre les phrases plus naturelles. Voici quelques examples comment faire:\\n{examples}\\n\\\n",
    "Sors une seule phrase par ligne. Ne formatte ni commente ta réponse en aucune manière que ce soit.\"\n",
    "\n",
    "    user_prompt = f\"S'il te plaît, crée {volume} phrases en français du Type suivant: {nature}. Sors une seule phrase par ligne. \\\n",
    "Ne formatte ni commente ta réponse en aucune manière que ce soit.\"\n",
    "\n",
    "  messages = [\n",
    "      {\"role\": \"system\", \"content\": system_message},\n",
    "      {\"role\": \"user\", \"content\": user_prompt}\n",
    "    ]\n",
    "\n",
    "  if model == \"Llama\":\n",
    "\n",
    "    quant_config = BitsAndBytesConfig(\n",
    "        load_in_4bit=True,\n",
    "        bnb_4bit_use_double_quant=True,\n",
    "        bnb_4bit_compute_dtype=torch.bfloat16,\n",
    "        bnb_4bit_quant_type=\"nf4\"\n",
    "    )\n",
    "\n",
    "    tokenizer = AutoTokenizer.from_pretrained(LLAMA)\n",
    "    tokenizer.pad_token = tokenizer.eos_token\n",
    "    inputs = tokenizer.apply_chat_template(messages, return_tensors=\"pt\").to(\"cuda\")\n",
    "    streamer = TextStreamer(tokenizer)\n",
    "    model = AutoModelForCausalLM.from_pretrained(LLAMA, device_map=\"auto\", quantization_config=quant_config)\n",
    "    outputs = model.generate(inputs, max_new_tokens=10000)\n",
    "\n",
    "    response  = tokenizer.decode(outputs[0])\n",
    "    sentences = list(re.finditer(\"(?:<\\|end_header_id\\|>)([^<]+)(?:<\\|eot_id\\|>)\", str(response), re.DOTALL))[-1].group(1)\n",
    "\n",
    "  elif model == \"OpenAI\":\n",
    "    response = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages)\n",
    "    sentences = response.choices[0].message.content\n",
    "\n",
    "  return sentences"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "VRKdu0fEt8mg"
   },
   "outputs": [],
   "source": [
    "global data\n",
    "data = \"\"\n",
    "\n",
    "with gr.Blocks(\n",
    "        css=\"\"\"\n",
    "    .red-button {\n",
    "        background-color: darkred !important;\n",
    "        border-color: red !important;\n",
    "    }\n",
    "    .blue-button {\n",
    "        background-color: darkblue !important;\n",
    "        border-color: blue !important;\n",
    "    }\n",
    "    .green-button {\n",
    "        background-color: green !important;\n",
    "        border-color: green !important;\n",
    "    }\n",
    "    \"\"\"\n",
    ") as view:\n",
    "  with gr.Row():\n",
    "    title = gr.HTML(\"<h1><big>D</big>ataset Generator <small>PLUS</small></h1><h2>for English, German, and French</h2>\")\n",
    "    subtitle = gr.HTML(\"<h3>Instructions:</h3><ol><li>Pick the language</li>\\\n",
    "<li>Select a model</li><li>Indicate how many sentences you need</li>\\\n",
    "<li>Describe the type of sentence you're looking for</li><li>Give up to three examples of the desired output sentence, and describe each of them briefly</li>\\\n",
    "<li>Hit <q>Create Dataset</q></li>\\\n",
    "<li>Save the output (.txt) to your Google Drive</li>\")\n",
    "  with gr.Row():\n",
    "    language_choice = gr.Dropdown(choices=[\"English\", \"German\", \"French\"], label=\"Select language\", value=\"English\", interactive=True)\n",
    "    model_choice    = gr.Dropdown(choices=[\"Llama\", \"OpenAI\"], label=\"Select model\", value=\"Llama\", interactive=True)\n",
    "    volume = gr.Textbox(label=\"Required number of sentences\", interactive=True)\n",
    "  with gr.Row():\n",
    "    typeInput = gr.Textbox(label=\"Short description of the kind of sentence you need\", interactive=True)\n",
    "  with gr.Row():\n",
    "    sentence_1    = gr.Textbox(label=\"Example sentence 1\", interactive=True)\n",
    "    instruction_1 = gr.Textbox(label=\"Description\", interactive=True)\n",
    "  with gr.Row():\n",
    "    sentence_2    = gr.Textbox(label=\"Example sentence 2\", interactive=True)\n",
    "    instruction_2 = gr.Textbox(label=\"Description\", interactive=True)\n",
    "  with gr.Row():\n",
    "    sentence_3    = gr.Textbox(label=\"Example sentence 3\", interactive=True)\n",
    "    instruction_3 = gr.Textbox(label=\"Description\", interactive=True)\n",
    "  with gr.Row():\n",
    "    liveSentences = gr.Markdown(\n",
    "        value='<div style=\"color: #999; padding: 10px;\">Your sentences will be displayed here …</div>',\n",
    "        label=\"Generated sentences:\",\n",
    "         min_height=60,\n",
    "         max_height=200\n",
    "        )\n",
    "  with gr.Row():\n",
    "    generate = gr.Button(value=\"Generate sentences\", elem_classes=\"blue-button\")\n",
    "  with gr.Row():\n",
    "    clear = gr.Button(value=\"Clear everything\", elem_classes=\"red-button\")\n",
    "  with gr.Row():\n",
    "    outputPath  = gr.Textbox(label=\"Specify the desired name and location on your Google Drive for the sentences (plain text) to be saved\", interactive=True)\n",
    "  with gr.Row():\n",
    "    save  = gr.Button(value=\"Save generated data\", elem_classes=\"blue-button\")\n",
    "\n",
    "  def generateSentences(typeInput, s1, i1, s2, i2, s3, i3, volume, language, model):\n",
    "    global data\n",
    "    nature = \"\"\n",
    "    shots = {}\n",
    "    amount = int(volume) if re.search(\"^[0-9]+$\", volume) is not None else 10\n",
    "\n",
    "    if typeInput != None:\n",
    "      nature = typeInput\n",
    "    else:\n",
    "      nature = \"Random sentences of mixed nature\"\n",
    "\n",
    "    if s1 != None:\n",
    "      if i1 != None:\n",
    "        shots[i1] = s1\n",
    "      else:\n",
    "        shots[\"A medium-long random sentence about anything\"] = s1\n",
    "    else:\n",
    "      shots[\"A medium-long random sentence about anything\"] = \"Paul, waking up out of his half-drunken haze, clearly couldn't tell left from right and ran right into the door.\"\n",
    "\n",
    "    if s2 != None:\n",
    "      if i2 != None:\n",
    "        shots[i2] = s2\n",
    "      else:\n",
    "        shots[\"A medium-long random sentence about anything\"] = s2\n",
    "\n",
    "    if s3 != None:\n",
    "      if i3 != None:\n",
    "        shots[i3] = s3\n",
    "      else:\n",
    "        shots[\"A medium-long random sentence about anything\"] = s3\n",
    "\n",
    "    sentences = dataset_generator(model, nature, shots, amount, language)\n",
    "    data = sentences\n",
    "\n",
    "    return sentences\n",
    "\n",
    "  def saveData(path):\n",
    "    global data\n",
    "    drive.mount(\"/content/drive\")\n",
    "\n",
    "    dir_path = os.path.dirname(\"/content/drive/MyDrive/\" + path)\n",
    "\n",
    "    if not os.path.exists(dir_path):\n",
    "      os.makedirs(dir_path)\n",
    "\n",
    "    with open(\"/content/drive/MyDrive/\" + path, \"w\", encoding=\"utf-8\") as f:\n",
    "      f.write(data)\n",
    "\n",
    "  generate.click(generateSentences, inputs=[typeInput, sentence_1, instruction_1, sentence_2, instruction_2, sentence_3, instruction_3, volume, language_choice, model_choice], outputs=liveSentences)\n",
    "  clear.click(\n",
    "      lambda: [\n",
    "          gr.update(value=\"\"),\n",
    "          gr.update(value=\"\"),\n",
    "          gr.update(value=\"\"),\n",
    "          gr.update(value=\"\"),\n",
    "          gr.update(value=\"\"),\n",
    "          gr.update(value=\"\"),\n",
    "          gr.update(value=\"\"),\n",
    "          gr.update(value=\"\"),\n",
    "          gr.update(value='<div style=\"color: #999; padding: 10px;\">Your sentences will be displayed here …</div>'),\n",
    "          gr.update(value=\"\"),\n",
    "          gr.update(value=\"Save generated data\", elem_classes=\"blue-button\")],\n",
    "      None,\n",
    "      [volume, typeInput, sentence_1, instruction_1, sentence_2, instruction_2,\n",
    "         sentence_3, instruction_3, liveSentences, outputPath, save],\n",
    "      queue=False\n",
    "      )\n",
    "  save.click(saveData, inputs=outputPath, outputs=None).then(lambda: gr.update(value=\"Your data has been saved\", elem_classes=\"green-button\"), [], [save])\n",
    "\n",
    "view.launch(share=True) #, debug=True)"
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "authorship_tag": "ABX9TyPxJzufoQPtui+nhl1J1xiR",
   "gpuType": "T4",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}