File size: 13,345 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "de352746-564c-4b33-b1ad-0b449988c448",
   "metadata": {},
   "source": [
    "# Perl to Python Code Generator\n",
    "\n",
    "The requirement: use a Frontier model to generate high performance Python code from Perl code\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import io\n",
    "import sys\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "import google.generativeai\n",
    "import anthropic\n",
    "from IPython.display import Markdown, display, update_display\n",
    "import gradio as gr\n",
    "import subprocess\n",
    "import requests\n",
    "import json\n",
    "#for Hugging face end points\n",
    "from huggingface_hub import login, InferenceClient\n",
    "from transformers import AutoTokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "4f672e1c-87e9-4865-b760-370fa605e614",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured.\n"
     ]
    }
   ],
   "source": [
    "# environment\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
    "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')\n",
    "##for connecting to HF End point\n",
    "hf_token = os.environ['HF_TOKEN']\n",
    "login(hf_token, add_to_git_credential=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da",
   "metadata": {},
   "outputs": [],
   "source": [
    "# initialize\n",
    "# NOTE - option to use ultra-low cost models by uncommenting last 2 lines\n",
    "\n",
    "openai = OpenAI()\n",
    "claude = anthropic.Anthropic()\n",
    "OPENAI_MODEL = \"gpt-4o\"\n",
    "CLAUDE_MODEL = \"claude-3-5-sonnet-20240620\"\n",
    "\n",
    "# Want to keep costs ultra-low? Uncomment these lines:\n",
    "OPENAI_MODEL = \"gpt-4o-mini\"\n",
    "CLAUDE_MODEL = \"claude-3-haiku-20240307\"\n",
    "\n",
    "#To access open source models from Hugging face end points\n",
    "code_qwen = \"Qwen/CodeQwen1.5-7B-Chat\"\n",
    "code_gemma = \"google/codegemma-7b-it\"\n",
    "CODE_QWEN_URL = \"https://h1vdol7jxhje3mpn.us-east-1.aws.endpoints.huggingface.cloud\"\n",
    "CODE_GEMMA_URL = \"https://c5hggiyqachmgnqg.us-east-1.aws.endpoints.huggingface.cloud\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "6896636f-923e-4a2c-9d6c-fac07828a201",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_message = \"You are an assistant that reimplements Perl scripts code into a high performance Python for a Windows 11 PC. \"\n",
    "system_message += \"Respond only with Python code; use comments sparingly and do not provide any explanation other than occasional # comments. \"\n",
    "system_message += \"The Python response needs to produce an identical output in the fastest possible time.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "8e7b3546-57aa-4c29-bc5d-f211970d04eb",
   "metadata": {},
   "outputs": [],
   "source": [
    "def user_prompt_for(perl):\n",
    "    user_prompt = \"Rewrite this Perl scripts code in C++ with the fastest possible implementation that produces identical output in the least time. \"\n",
    "    user_prompt += \"Respond only with Python code; do not explain your work other than a few comments. \"\n",
    "    user_prompt += \"Pay attention to number types to ensure no int overflows. Remember to #include all necessary python libraries as needed,\\\n",
    "    such as requests, os, json etc.\\n\\n\"\n",
    "    user_prompt += perl\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "c6190659-f54c-4951-bef4-4960f8e51cc4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def messages_for(perl):\n",
    "    return [\n",
    "        {\"role\": \"system\", \"content\": system_message},\n",
    "        {\"role\": \"user\", \"content\": user_prompt_for(perl)}\n",
    "    ]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "71e1ba8c-5b05-4726-a9f3-8d8c6257350b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# write to a file called script.py\n",
    "\n",
    "def write_output(python):\n",
    "    code = python.replace(\"```python\",\"\").replace(\"```\",\"\")\n",
    "    output_file = \"script.py\"\n",
    "    with open(output_file, \"w\") as f:\n",
    "        f.write(code)\n",
    "    return output_file"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "0be9f47d-5213-4700-b0e2-d444c7c738c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_gpt(perl):    \n",
    "    stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(perl), stream=True)\n",
    "    reply = \"\"\n",
    "    for chunk in stream:\n",
    "        fragment = chunk.choices[0].delta.content or \"\"\n",
    "        reply += fragment\n",
    "        cleaned_reply = reply.replace('```python\\n','').replace('```','')\n",
    "        yield cleaned_reply, None\n",
    "    yield cleaned_reply, write_output(cleaned_reply)\n",
    "        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "8669f56b-8314-4582-a167-78842caea131",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_claude(perl):\n",
    "    result = claude.messages.stream(\n",
    "        model=CLAUDE_MODEL,\n",
    "        max_tokens=2000,\n",
    "        system=system_message,\n",
    "        messages=[{\"role\": \"user\", \"content\": user_prompt_for(perl)}],\n",
    "    )\n",
    "    reply = \"\"\n",
    "    with result as stream:\n",
    "        for text in stream.text_stream:\n",
    "            reply += text\n",
    "            cleaned_reply = reply.replace('```python\\n','').replace('```','')\n",
    "            yield cleaned_reply, None\n",
    "    yield cleaned_reply, write_output(cleaned_reply)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "5b166afe-741a-4711-bc38-626de3538ea2",
   "metadata": {},
   "outputs": [],
   "source": [
    "def stream_code_qwen(python):\n",
    "    tokenizer = AutoTokenizer.from_pretrained(code_qwen)\n",
    "    messages = messages_for(python)\n",
    "    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
    "    client = InferenceClient(CODE_QWEN_URL, token=hf_token)\n",
    "    stream = client.text_generation(text, stream=True, details=True, max_new_tokens=3000)\n",
    "    result = \"\"\n",
    "    for r in stream:\n",
    "        result += r.token.text\n",
    "        cleaned_reply = result.replace('```python\\n','').replace('```','')\n",
    "        yield cleaned_reply, None\n",
    "    yield cleaned_reply, write_output(cleaned_reply)   "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "2f1ae8f5-16c8-40a0-aa18-63b617df078d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def generate(perl_script, model):\n",
    "    if model==\"GPT\":\n",
    "        for result, file in stream_gpt(perl_script):\n",
    "            yield result, file\n",
    "        yield result, file\n",
    "    elif model==\"Claude\":\n",
    "        for result, file in stream_claude(perl_script):\n",
    "            yield result, file\n",
    "        yield result, file\n",
    "    elif model==\"CodeQwen\":\n",
    "        for result, file in stream_code_qwen(perl_script):\n",
    "            yield result, file\n",
    "        yield result, file\n",
    "    else:\n",
    "        raise ValueError(\"Unknown model\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "aa8e9a1c-9509-4056-bd0b-2578f3cc3335",
   "metadata": {},
   "outputs": [],
   "source": [
    "def execute_perl(perl_code):\n",
    "\n",
    "    import subprocess\n",
    "    #print(perl_file)\n",
    "    perl_path = r\"E:\\Softwares\\Perl\\perl\\bin\\perl.exe\"\n",
    "    # Run Perl script from Jupyter Lab\n",
    "    result = subprocess.run([perl_path, '-e', perl_code], capture_output=True, text=True)\n",
    "\n",
    "    # Return the output of the Perl script\n",
    "    return result.stdout\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "01e9d980-8830-4421-8753-a065dcbea1ed",
   "metadata": {},
   "outputs": [],
   "source": [
    "def execute_python(code):\n",
    "    try:\n",
    "        output = io.StringIO()\n",
    "        sys.stdout = output\n",
    "        exec(code)\n",
    "    finally:\n",
    "        sys.stdout = sys.__stdout__\n",
    "    return output.getvalue()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "ed4e0aff-bfde-440e-8e6b-eb3c7143837e",
   "metadata": {},
   "outputs": [],
   "source": [
    "css = \"\"\"\n",
    ".perl {background-color: #093645;}\n",
    ".python {background-color: #0948;}\n",
    "\"\"\"\n",
    "\n",
    "force_dark_mode = \"\"\"\n",
    "function refresh() {\n",
    "    const url = new URL(window.location);\n",
    "    if (url.searchParams.get('__theme') !== 'dark') {\n",
    "        url.searchParams.set('__theme', 'dark');\n",
    "        window.location.href = url.href;\n",
    "    }\n",
    "}\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "caaee54d-79db-4db3-87df-2e7d2eba197c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "with gr.Blocks(css=css, js=force_dark_mode) as ui:\n",
    "\n",
    "    gr.HTML(\"<h2 style='text-align: center; color: white;'> PERL to Python Code Generator</h2>\")\n",
    "    with gr.Row(scale=0, equal_height=True):\n",
    "        model = gr.Dropdown([\"GPT\", \"Claude\", \"CodeQwen\"], label=\"Select model\", value=\"GPT\")\n",
    "        perl_file = gr.File(label=\"Upload Perl Script:\")\n",
    "        convert = gr.Button(\"Convert to Python\")\n",
    "        file_output = gr.File(label=\"Download Python script\", visible=False)\n",
    "    with gr.Row():\n",
    "        perl_script = gr.Textbox(label=\"Perl Script:\")\n",
    "        python_script = gr.Textbox(label=\"Converted Python Script:\")        \n",
    "    with gr.Row():\n",
    "        perl_run = gr.Button(\"Run PERL\")\n",
    "        python_run = gr.Button(\"Run Python\")\n",
    "    with gr.Row():\n",
    "        perl_out = gr.TextArea(label=\"PERL result:\", elem_classes=[\"perl\"])\n",
    "        python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n",
    "    with gr.Row():        \n",
    "        clear_button = gr.Button(\"Clear\")\n",
    "    \n",
    "    def extract_perl_code(file):\n",
    "        if file is None:\n",
    "            return \"No file uploaded.\", None        \n",
    "        with open(file.name, \"r\", encoding=\"utf-8\") as f:\n",
    "            perl_code = f.read()\n",
    "        return perl_code\n",
    "\n",
    "    convert.click(extract_perl_code, inputs=[perl_file], outputs=[perl_script]).then(\n",
    "        generate, inputs=[perl_script, model], outputs=[python_script, file_output]).then(\n",
    "        lambda file_output: gr.update(visible=True), inputs=[file_output], outputs=[file_output]\n",
    "    )\n",
    "\n",
    "    perl_run.click(execute_perl, inputs=[perl_script], outputs=[perl_out])\n",
    "    python_run.click(execute_python, inputs=[python_script], outputs=[python_out]) \n",
    "\n",
    "    def clear_all():\n",
    "        return None, \"\", \"\", gr.update(visible=False), \"\", \"\"\n",
    "\n",
    "    clear_button.click(\n",
    "        clear_all,\n",
    "        outputs=[perl_file, perl_script, python_script, file_output, perl_out, python_out]\n",
    "    )\n",
    "    \n",
    "\n",
    "ui.launch(inbrowser=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.13.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}