Spaces:
Sleeping
Sleeping
File size: 39,621 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 |
{
"cells": [
{
"cell_type": "markdown",
"id": "4a6ab9a2-28a2-445d-8512-a0dc8d1b54e9",
"metadata": {},
"source": [
"# Code Generator\n",
"\n",
"The requirement: use an Open Source model to generate high performance C++ code from Python code\n",
"\n",
"To replicate this, you'll need to set up a HuggingFace endpoint as I do in the video. It's simple to do, and it's quite satisfying to see the results!\n",
"\n",
"It's also an important part of your learning; this is the first example of deploying an open source model to be behind an API. We'll return to this in Week 8, but this should plant a seed in your mind for what's involved in moving open source models into production.\n",
"\n",
"Added the use of inference providers that was introduced recently by Hugging Face to convert the code.\n",
"Improved the user prompt to include algorithic efficeiny and performance optimization.\n",
"\n",
"Added Java as a conversion option.\n",
"\n",
"Note: C++ commands work on windows environment.\n"
]
},
{
"cell_type": "markdown",
"id": "22e1567b-33fd-49e7-866e-4b635d15715a",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left;\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../important.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h1 style=\"color:#900;\">Important - Pause Endpoints when not in use</h1>\n",
" <span style=\"color:#900;\">\n",
" If you do decide to use HuggingFace endpoints for this project, you should stop or pause the endpoints when you are done to avoid accruing unnecessary running cost. The costs are very low as long as you only run the endpoint when you're using it. Navigate to the HuggingFace endpoint UI <a href=\"https://ui.endpoints.huggingface.co/\">here,</a> open your endpoint, and click Pause to put it on pause so you no longer pay for it. \n",
"Many thanks to student John L. for raising this.\n",
"<br/><br/>\n",
"In week 8 we will use Modal instead of HuggingFace endpoints; with Modal you only pay for the time that you use it and you should get free credits.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": 231,
"id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import io\n",
"import sys\n",
"import json\n",
"import requests\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import google.generativeai\n",
"import anthropic\n",
"from IPython.display import Markdown, display, update_display\n",
"import gradio as gr\n",
"import subprocess, re"
]
},
{
"cell_type": "code",
"execution_count": 198,
"id": "4f672e1c-87e9-4865-b760-370fa605e614",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"\n",
"load_dotenv()\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": 199,
"id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da",
"metadata": {},
"outputs": [],
"source": [
"# initialize\n",
"\n",
"openai = OpenAI()\n",
"claude = anthropic.Anthropic()\n",
"OPENAI_MODEL = \"gpt-4o\"\n",
"CLAUDE_MODEL = \"claude-3-5-sonnet-20240620\""
]
},
{
"cell_type": "code",
"execution_count": 200,
"id": "2db60a72-d098-42ca-8ce2-1e037c86b718",
"metadata": {},
"outputs": [],
"source": [
"def system_prompt_for(language: str) -> str:\n",
" system_prompt = (\n",
" f\"You are an assistant that reimplements Python code in high performance {language.upper()} for an Windows intel i7.\"\n",
" f\"Respond only with {language.upper()} code; use comments sparingly and do not provide any explanation other than occasional comments.\"\n",
" f\"The {language.upper()} response needs to produce an identical output in the fastest possible time. Keep implementations of random number generators identical so that results match exactly.\"\n",
" )\n",
" return system_prompt"
]
},
{
"cell_type": "code",
"execution_count": 243,
"id": "70583432-e851-40d1-a219-2fb32b830dc8",
"metadata": {},
"outputs": [],
"source": [
"#updated the original prompt to include algorithic efficeiny and performance optimization\n",
"def user_prompt_for(python: str, language: str) -> str:\n",
" if language.lower() not in {\"cpp\", \"java\"}:\n",
" raise ValueError(\"Unsupported language. Please choose 'C++' or 'Java'.\")\n",
" \n",
" optimization_notes = {\n",
" \"cpp\": (\n",
" \"- Use `int64_t` instead of `int` where necessary to prevent overflows.\\n\"\n",
" \"- Ensure random number generation in C++ matches Python's output as closely as possible.\\n\"\n",
" \"- Avoid undefined behavior, such as bit shifts that exceed type width (`1UL << 32` is incorrect for `uint32_t`).\\n\"\n",
" \"- Utilize `std::vector` for dynamic arrays and prefer preallocation for efficiency.\\n\"\n",
" \"- Consider `std::array` or `std::span` when fixed-size arrays are sufficient.\\n\"\n",
" \"- Optimize with **SIMD**, cache-friendly structures, and memory alignment where necessary.\\n\"\n",
" ),\n",
" \"java\": (\n",
" \"- Use `long` instead of `int` where necessary to prevent overflows.\\n\"\n",
" \"- Ensure random number generation in Java matches Python's output as closely as possible.\\n\"\n",
" \"- Use `ArrayList` instead of primitive arrays if dynamic resizing is needed.\\n\"\n",
" \"- Utilize `BigInteger` if handling large numbers that could exceed `long`.\\n\"\n",
" \"- Optimize with **parallel streams** (`IntStream.parallel()`) and **efficient data structures** (`HashMap`, `LinkedList`, etc.).\\n\"\n",
" )\n",
" }\n",
"\n",
" user_prompt = (\n",
" f\"First, analyze the given Python code to understand its core purpose and algorithmic approach. \"\n",
" f\"Then, implement a {language} solution that achieves the same output while prioritizing:\\n\"\n",
" \"1. **Algorithmic Efficiency** - Optimize time and space complexity, even if it means using a different approach.\\n\"\n",
" \"2. **Numerical Correctness** - Prevent integer overflows, use appropriate data types (`long`, `BigInteger`, etc.), \"\n",
" \"and ensure correct handling of edge cases.\\n\"\n",
" \"3. **Performance Optimization** - Utilize language-specific features for efficiency.\\n\\n\"\n",
" \n",
" \"### **Important Notes:**\\n\"\n",
" + optimization_notes[language.lower()] +\n",
" \"\\n### **Expected Response:**\\n\"\n",
" f\"Respond **only with {language} code**, including all necessary imports and ensuring the output matches the Python version exactly.\\n\\n\"\n",
" \n",
" \"Here's the Python code to analyze and optimize:\\n\\n\"\n",
" + python\n",
" )\n",
" \n",
" return user_prompt\n"
]
},
{
"cell_type": "code",
"execution_count": 202,
"id": "c6190659-f54c-4951-bef4-4960f8e51cc4",
"metadata": {},
"outputs": [],
"source": [
"def messages_for(python, language=\"cpp\"):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt_for(language)},\n",
" {\"role\": \"user\", \"content\": user_prompt_for(python, language)}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": 241,
"id": "71e1ba8c-5b05-4726-a9f3-8d8c6257350b",
"metadata": {},
"outputs": [],
"source": [
"# write to a file called optimized.cpp\n",
"\n",
"def write_output(code, file_name):\n",
" with open(file_name, \"w\") as f:\n",
" f.write(code)"
]
},
{
"cell_type": "code",
"execution_count": 226,
"id": "e7d2fea8-74c6-4421-8f1e-0e76d5b201b9",
"metadata": {},
"outputs": [],
"source": [
"def optimize_gpt(python, language=\"cpp\"): \n",
" stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python, language), stream=True)\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" fragment = chunk.choices[0].delta.content or \"\"\n",
" reply += fragment\n",
" print(fragment, end='', flush=True)\n",
" file_name= f\"optimized.{language}\"\n",
" if language == \"java\":\n",
" # Extract class name from Java code\n",
" match = re.search(r\"\\b(public\\s+)?class\\s+(\\w+)\", reply)\n",
" class_name = match.group(2) if match else \"OptimizedJava\"\n",
" file_name = f\"{class_name}.java\"\n",
" else:\n",
" file_name = f\"optimized.{language}\"\n",
" write_output(reply, file_name)"
]
},
{
"cell_type": "code",
"execution_count": 227,
"id": "7cd84ad8-d55c-4fe0-9eeb-1895c95c4a9d",
"metadata": {},
"outputs": [],
"source": [
"def optimize_claude(python, language=\"cpp\"):\n",
" result = claude.messages.stream(\n",
" model=CLAUDE_MODEL,\n",
" max_tokens=2000,\n",
" system=system_message,\n",
" messages=[{\"role\": \"user\", \"content\": user_prompt_for(python, language)}],\n",
" )\n",
" reply = \"\"\n",
" with result as stream:\n",
" for text in stream.text_stream:\n",
" reply += text\n",
" print(text, end=\"\", flush=True)\n",
" if language == \"java\":\n",
" # Extract class name from Java code\n",
" match = re.search(r\"\\b(public\\s+)?class\\s+(\\w+)\", reply)\n",
" class_name = match.group(2) if match else \"OptimizedJava\"\n",
" file_name = f\"{class_name}.java\"\n",
" else:\n",
" file_name = f\"optimized.{language}\"\n",
" write_output(reply, file_name)"
]
},
{
"cell_type": "code",
"execution_count": 206,
"id": "a1cbb778-fa57-43de-b04b-ed523f396c38",
"metadata": {},
"outputs": [],
"source": [
"pi = \"\"\"\n",
"import time\n",
"\n",
"def calculate(iterations, param1, param2):\n",
" result = 1.0\n",
" for i in range(1, iterations+1):\n",
" j = i * param1 - param2\n",
" result -= (1/j)\n",
" j = i * param1 + param2\n",
" result += (1/j)\n",
" return result\n",
"\n",
"start_time = time.time()\n",
"result = calculate(100_000_000, 4, 1) * 4\n",
"end_time = time.time()\n",
"\n",
"print(f\"Result: {result:.12f}\")\n",
"print(f\"Execution Time: {(end_time - start_time):.6f} seconds\")\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "7fe1cd4b-d2c5-4303-afed-2115a3fef200",
"metadata": {},
"outputs": [],
"source": [
"exec(pi)"
]
},
{
"cell_type": "code",
"execution_count": 91,
"id": "105db6f9-343c-491d-8e44-3a5328b81719",
"metadata": {},
"outputs": [],
"source": [
"optimize_gpt(pi, \"java\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bf26ee95-0c77-491d-9a91-579a1e96a8a3",
"metadata": {},
"outputs": [],
"source": [
"exec(pi)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4194e40c-04ab-4940-9d64-b4ad37c5bb40",
"metadata": {},
"outputs": [],
"source": [
"!g++ -O3 -std=c++17 -march=native -o optimized optimized.cpp\n",
"!optimized.exe"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "983a11fe-e24d-4c65-8269-9802c5ef3ae6",
"metadata": {},
"outputs": [],
"source": [
"optimize_claude(pi)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5a766f9-3d23-4bb4-a1d4-88ec44b61ddf",
"metadata": {},
"outputs": [],
"source": [
"!g++ -O3 -std=c++17 -march=native -o optimized optimized.cpp\n",
"!optimized.exe"
]
},
{
"cell_type": "code",
"execution_count": 207,
"id": "c3b497b3-f569-420e-b92e-fb0f49957ce0",
"metadata": {},
"outputs": [],
"source": [
"python_hard = \"\"\"# Be careful to support large number sizes\n",
"\n",
"def lcg(seed, a=1664525, c=1013904223, m=2**32):\n",
" value = seed\n",
" while True:\n",
" value = (a * value + c) % m\n",
" yield value\n",
" \n",
"def max_subarray_sum(n, seed, min_val, max_val):\n",
" lcg_gen = lcg(seed)\n",
" random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]\n",
" max_sum = float('-inf')\n",
" for i in range(n):\n",
" current_sum = 0\n",
" for j in range(i, n):\n",
" current_sum += random_numbers[j]\n",
" if current_sum > max_sum:\n",
" max_sum = current_sum\n",
" return max_sum\n",
"\n",
"def total_max_subarray_sum(n, initial_seed, min_val, max_val):\n",
" total_sum = 0\n",
" lcg_gen = lcg(initial_seed)\n",
" for _ in range(20):\n",
" seed = next(lcg_gen)\n",
" total_sum += max_subarray_sum(n, seed, min_val, max_val)\n",
" return total_sum\n",
"\n",
"# Parameters\n",
"n = 10000 # Number of random numbers\n",
"initial_seed = 42 # Initial seed for the LCG\n",
"min_val = -10 # Minimum value of random numbers\n",
"max_val = 10 # Maximum value of random numbers\n",
"\n",
"# Timing the function\n",
"import time\n",
"start_time = time.time()\n",
"result = total_max_subarray_sum(n, initial_seed, min_val, max_val)\n",
"end_time = time.time()\n",
"\n",
"print(\"Total Maximum Subarray Sum (20 runs):\", result)\n",
"print(\"Execution Time: {:.6f} seconds\".format(end_time - start_time))\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "dab5e4bc-276c-4555-bd4c-12c699d5e899",
"metadata": {},
"outputs": [],
"source": [
"exec(python_hard)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e8d24ed5-2c15-4f55-80e7-13a3952b3cb8",
"metadata": {},
"outputs": [],
"source": [
"optimize_gpt(python_hard)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e0b3d073-88a2-40b2-831c-6f0c345c256f",
"metadata": {},
"outputs": [],
"source": [
"!g++ -O3 -std=c++17 -march=native -o optimized optimized.cpp\n",
"!optimized.exe"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9305446-1d0c-4b51-866a-b8c1e299bf5c",
"metadata": {},
"outputs": [],
"source": [
"optimize_claude(python_hard)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0c181036-8193-4fdd-aef3-fc513b218d43",
"metadata": {},
"outputs": [],
"source": [
"!g++ -O3 -std=c++17 -march=native -o optimized optimized.cpp\n",
"!optimized.exe"
]
},
{
"cell_type": "code",
"execution_count": 240,
"id": "0be9f47d-5213-4700-b0e2-d444c7c738c0",
"metadata": {},
"outputs": [],
"source": [
"def stream_gpt(python, language=\"cpp\"): \n",
" stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python, language), stream=True)\n",
" reply = \"\"\n",
" code_block = f\"```{language}\\n\"\n",
" for chunk in stream:\n",
" fragment = chunk.choices[0].delta.content or \"\"\n",
" reply += fragment\n",
" cleaned_reply = reply.replace(code_block,'').replace('```','')\n",
" yield cleaned_reply"
]
},
{
"cell_type": "code",
"execution_count": 239,
"id": "8669f56b-8314-4582-a167-78842caea131",
"metadata": {},
"outputs": [],
"source": [
"def stream_claude(python, language=\"cpp\"):\n",
" result = claude.messages.stream(\n",
" model=CLAUDE_MODEL,\n",
" max_tokens=2000,\n",
" system=system_message,\n",
" messages=[{\"role\": \"user\", \"content\": user_prompt_for(python, language)}],\n",
" )\n",
" reply = \"\"\n",
" code_block = f\"```{language}\\n\"\n",
" with result as stream:\n",
" for text in stream.text_stream:\n",
" reply += text\n",
" cleaned_reply = reply.replace(code_block,'').replace('```','')\n",
" yield cleaned_reply"
]
},
{
"cell_type": "code",
"execution_count": 186,
"id": "2f1ae8f5-16c8-40a0-aa18-63b617df078d",
"metadata": {},
"outputs": [],
"source": [
"def optimize(python, model):\n",
" if model==\"GPT\":\n",
" result = stream_gpt(python)\n",
" elif model==\"Claude\":\n",
" result = stream_claude(python)\n",
" else:\n",
" raise ValueError(\"Unknown model\")\n",
" for stream_so_far in result:\n",
" yield stream_so_far "
]
},
{
"cell_type": "code",
"execution_count": 189,
"id": "f1ddb38e-6b0a-4c37-baa4-ace0b7de887a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7888/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 189,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with gr.Blocks() as ui:\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python code:\", lines=10, value=python_hard)\n",
" cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
" with gr.Row():\n",
" model = gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\", value=\"GPT\")\n",
" convert = gr.Button(\"Convert code\")\n",
"\n",
" convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
"\n",
"ui.launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": 210,
"id": "19bf2bff-a822-4009-a539-f003b1651383",
"metadata": {},
"outputs": [],
"source": [
"def execute_python(code):\n",
" try:\n",
" output = io.StringIO()\n",
" sys.stdout = output\n",
" exec(code)\n",
" finally:\n",
" sys.stdout = sys.__stdout__\n",
" return output.getvalue()"
]
},
{
"cell_type": "code",
"execution_count": 211,
"id": "9a2274f1-d03b-42c0-8dcc-4ce159b18442",
"metadata": {},
"outputs": [],
"source": [
"css = \"\"\"\n",
".python {background-color: #306998;}\n",
".cpp {background-color: #050;}\n",
".java {background-color: #306775;}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 97,
"id": "f1303932-160c-424b-97a8-d28c816721b2",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7868/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 97,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with gr.Blocks(css=css) as ui:\n",
" gr.Markdown(\"## Convert code from Python to C++\")\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python code:\", value=python_hard, lines=10)\n",
" cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
" with gr.Row():\n",
" model = gr.Dropdown([\"GPT\", \"Claude\"], label=\"Select model\", value=\"GPT\")\n",
" with gr.Row():\n",
" convert = gr.Button(\"Convert code\")\n",
" with gr.Row():\n",
" python_run = gr.Button(\"Run Python\")\n",
" cpp_run = gr.Button(\"Run C++\")\n",
" with gr.Row():\n",
" python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n",
" cpp_out = gr.TextArea(label=\"C++ result:\", elem_classes=[\"cpp\"])\n",
"\n",
" convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
" python_run.click(execute_python, inputs=[python], outputs=[python_out])\n",
" cpp_run.click(execute_cpp, inputs=[cpp], outputs=[cpp_out])\n",
"\n",
"ui.launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": 191,
"id": "bb8c5b4e-ec51-4f21-b3f8-6aa94fede86d",
"metadata": {},
"outputs": [],
"source": [
"from huggingface_hub import login, InferenceClient"
]
},
{
"cell_type": "code",
"execution_count": 117,
"id": "13347633-4606-4e38-9927-80c39e65c1f1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured.\n"
]
}
],
"source": [
"hf_token = os.environ['HF_TOKEN']\n",
"login(hf_token)"
]
},
{
"cell_type": "code",
"execution_count": 118,
"id": "ef60a4df-6267-4ebd-8eed-dcb917af0a5e",
"metadata": {},
"outputs": [],
"source": [
"code_qwen = \"Qwen/CodeQwen1.5-7B-Chat\"\n",
"code_gemma = \"google/codegemma-7b-it\"\n",
"messages=messages_for(pi)"
]
},
{
"cell_type": "code",
"execution_count": 119,
"id": "3825d77a-03c6-42b2-89bc-ccbcb1585740",
"metadata": {},
"outputs": [
{
"ename": "HfHubHTTPError",
"evalue": "402 Client Error: Payment Required for url: https://huggingface.co/api/inference-proxy/sambanova/v1/chat/completions (Request ID: Root=1-67afb729-1eb9aff1704314144ef14e59;2df843ad-b7d2-4145-bb7b-1cfd94ae19ef)\n\nYou have exceeded your monthly included credits for Inference Endpoints. Subscribe to PRO to get 20x more monthly allowance.",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mHTTPError\u001b[0m Traceback (most recent call last)",
"File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\huggingface_hub\\utils\\_http.py:406\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[1;34m(response, endpoint_name)\u001b[0m\n\u001b[0;32m 405\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 406\u001b[0m \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 407\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\requests\\models.py:1024\u001b[0m, in \u001b[0;36mResponse.raise_for_status\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 1023\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m http_error_msg:\n\u001b[1;32m-> 1024\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m HTTPError(http_error_msg, response\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n",
"\u001b[1;31mHTTPError\u001b[0m: 402 Client Error: Payment Required for url: https://huggingface.co/api/inference-proxy/sambanova/v1/chat/completions",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[1;31mHfHubHTTPError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[119], line 5\u001b[0m\n\u001b[0;32m 1\u001b[0m client \u001b[38;5;241m=\u001b[39m InferenceClient(\n\u001b[0;32m 2\u001b[0m \tprovider\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msambanova\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 3\u001b[0m \tapi_key\u001b[38;5;241m=\u001b[39mhf_token\n\u001b[0;32m 4\u001b[0m )\n\u001b[1;32m----> 5\u001b[0m stream \u001b[38;5;241m=\u001b[39m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompletions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 6\u001b[0m \u001b[43m\t\u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mQwen/Qwen2.5-Coder-32B-Instruct\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[0;32m 7\u001b[0m \u001b[43m\t\u001b[49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[0;32m 8\u001b[0m \u001b[43m\t\u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m500\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 9\u001b[0m \u001b[43m\t\u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[0;32m 10\u001b[0m \u001b[43m)\u001b[49m\n\u001b[0;32m 12\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m stream:\n\u001b[0;32m 13\u001b[0m \u001b[38;5;28mprint\u001b[39m(chunk\u001b[38;5;241m.\u001b[39mchoices[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mdelta\u001b[38;5;241m.\u001b[39mcontent, end\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\huggingface_hub\\inference\\_client.py:970\u001b[0m, in \u001b[0;36mInferenceClient.chat_completion\u001b[1;34m(self, messages, model, stream, frequency_penalty, logit_bias, logprobs, max_tokens, n, presence_penalty, response_format, seed, stop, stream_options, temperature, tool_choice, tool_prompt, tools, top_logprobs, top_p)\u001b[0m\n\u001b[0;32m 943\u001b[0m parameters \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m 944\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m: payload_model,\n\u001b[0;32m 945\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfrequency_penalty\u001b[39m\u001b[38;5;124m\"\u001b[39m: frequency_penalty,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 961\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream_options\u001b[39m\u001b[38;5;124m\"\u001b[39m: stream_options,\n\u001b[0;32m 962\u001b[0m }\n\u001b[0;32m 963\u001b[0m request_parameters \u001b[38;5;241m=\u001b[39m provider_helper\u001b[38;5;241m.\u001b[39mprepare_request(\n\u001b[0;32m 964\u001b[0m inputs\u001b[38;5;241m=\u001b[39mmessages,\n\u001b[0;32m 965\u001b[0m parameters\u001b[38;5;241m=\u001b[39mparameters,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 968\u001b[0m api_key\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtoken,\n\u001b[0;32m 969\u001b[0m )\n\u001b[1;32m--> 970\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_inner_post\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest_parameters\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 972\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m stream:\n\u001b[0;32m 973\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _stream_chat_completion_response(data) \u001b[38;5;66;03m# type: ignore[arg-type]\u001b[39;00m\n",
"File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\huggingface_hub\\inference\\_client.py:327\u001b[0m, in \u001b[0;36mInferenceClient._inner_post\u001b[1;34m(self, request_parameters, stream)\u001b[0m\n\u001b[0;32m 324\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InferenceTimeoutError(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInference call timed out: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mrequest_parameters\u001b[38;5;241m.\u001b[39murl\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01merror\u001b[39;00m \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[0;32m 326\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 327\u001b[0m \u001b[43mhf_raise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponse\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 328\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m response\u001b[38;5;241m.\u001b[39miter_lines() \u001b[38;5;28;01mif\u001b[39;00m stream \u001b[38;5;28;01melse\u001b[39;00m response\u001b[38;5;241m.\u001b[39mcontent\n\u001b[0;32m 329\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m error:\n",
"File \u001b[1;32m~\\anaconda3\\envs\\llms\\Lib\\site-packages\\huggingface_hub\\utils\\_http.py:477\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[1;34m(response, endpoint_name)\u001b[0m\n\u001b[0;32m 473\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m _format(HfHubHTTPError, message, response) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[0;32m 475\u001b[0m \u001b[38;5;66;03m# Convert `HTTPError` into a `HfHubHTTPError` to display request information\u001b[39;00m\n\u001b[0;32m 476\u001b[0m \u001b[38;5;66;03m# as well (request id and/or server error message)\u001b[39;00m\n\u001b[1;32m--> 477\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m _format(HfHubHTTPError, \u001b[38;5;28mstr\u001b[39m(e), response) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n",
"\u001b[1;31mHfHubHTTPError\u001b[0m: 402 Client Error: Payment Required for url: https://huggingface.co/api/inference-proxy/sambanova/v1/chat/completions (Request ID: Root=1-67afb729-1eb9aff1704314144ef14e59;2df843ad-b7d2-4145-bb7b-1cfd94ae19ef)\n\nYou have exceeded your monthly included credits for Inference Endpoints. Subscribe to PRO to get 20x more monthly allowance."
]
}
],
"source": [
"client = InferenceClient(\n",
"\tprovider=\"sambanova\",\n",
"\tapi_key=hf_token\n",
")\n",
"stream = client.chat.completions.create(\n",
"\tmodel=\"Qwen/Qwen2.5-Coder-32B-Instruct\", \n",
"\tmessages=messages, \n",
"\tmax_tokens=500,\n",
"\tstream=True\n",
")\n",
"\n",
"for chunk in stream:\n",
" print(chunk.choices[0].delta.content, end=\"\")"
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "cc0c3e9c-2572-41d1-a476-6eae96b20695",
"metadata": {},
"outputs": [],
"source": [
"# using inference providers\n",
"def stream_code_qwen(python):\n",
" messages = messages_for(python)\n",
" client = InferenceClient(\n",
" \tprovider=\"sambanova\",\n",
" \tapi_key=hf_token\n",
" )\n",
" stream = client.chat.completions.create(\n",
" \tmodel=\"Qwen/Qwen2.5-Coder-32B-Instruct\", \n",
" \tmessages=messages, \n",
" \tmax_tokens=500,\n",
" \tstream=True\n",
" )\n",
" result = \"\"\n",
" for chunk in stream:\n",
" if chunk.choices and chunk.choices[0].delta.content:\n",
" result += chunk.choices[0].delta.content\n",
" yield result"
]
},
{
"cell_type": "code",
"execution_count": 212,
"id": "a82387d1-7651-4923-995b-fe18356fcaa6",
"metadata": {},
"outputs": [],
"source": [
"def optimize(python, model, language):\n",
" if model==\"GPT\":\n",
" result = stream_gpt(python, language)\n",
" elif model==\"Claude\":\n",
" result = stream_claude(python, language)\n",
" elif model==\"CodeQwen\":\n",
" result = stream_code_qwen(python, language)\n",
" else:\n",
" raise ValueError(\"Unknown model\")\n",
" for stream_so_far in result:\n",
" yield stream_so_far "
]
},
{
"cell_type": "code",
"execution_count": 213,
"id": "4ba311ec-c16a-4fe0-946b-4b940704cf65",
"metadata": {},
"outputs": [],
"source": [
"def select_sample_program(sample_program):\n",
" if sample_program==\"pi\":\n",
" return pi\n",
" elif sample_program==\"python_hard\":\n",
" return python_hard\n",
" else:\n",
" return \"Type your Python program here\""
]
},
{
"cell_type": "code",
"execution_count": 214,
"id": "06148e88-501b-4686-a41d-c3be528d8e6f",
"metadata": {},
"outputs": [],
"source": [
"def execute_cpp(code):\n",
" write_output(code, \"optimized.exe\")\n",
" try:\n",
" compile_cmd = [\"g++\", \"-Ofast\", \"-std=c++17\", \"-march=native\", \"-mtune=intel\", \"-o\", \"optimized\", \"optimized.cpp\"]\n",
" compile_result = subprocess.run(compile_cmd, check=True, text=True, capture_output=True)\n",
" run_cmd = [\"optimized.exe\"]\n",
" run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)\n",
" return run_result.stdout\n",
" except subprocess.CalledProcessError as e:\n",
" return f\"An error occurred:\\n{e.stderr}\""
]
},
{
"cell_type": "code",
"execution_count": 236,
"id": "a42e3871-f3a5-4f14-836c-1e8ecacb56b5",
"metadata": {},
"outputs": [],
"source": [
"def execute_java(code):\n",
" # Extract the class name from the Java code\n",
" match = re.search(r\"\\b(public\\s+)?class\\s+(\\w+)\", code)\n",
" class_name = match.group(2) if match else \"OptimizedJava\"\n",
"\n",
" file_name = f\"{class_name}.java\"\n",
" write_output(code, file_name)\n",
" try:\n",
" compile_cmd =[\"javac\", file_name]\n",
" subprocess.run(compile_cmd, check=True, text=True, capture_output=True)\n",
" run_cmd = [\"java\", class_name]\n",
" run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)\n",
" return run_result.stdout\n",
" except subprocess.CalledProcessError as e:\n",
" return f\"Error during compilation or execution:\\n{e.stderr}\""
]
},
{
"cell_type": "code",
"execution_count": 238,
"id": "f9ca2e6f-60c1-4e5f-b570-63c75b2d189b",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7901/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 238,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with gr.Blocks(css=css) as ui:\n",
" gr.Markdown(\"## Convert code from Python to C++ or Java\")\n",
" #input and output\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python code:\", value=python_hard, lines=10)\n",
" converted_code = gr.Textbox(label=\"Converted code:\", lines=10)\n",
" # java = gr.Textbox(label=\"Java code:\", lines=10)\n",
" #sample programs\n",
" with gr.Row():\n",
" with gr.Column():\n",
" sample_program = gr.Radio([\"pi\", \"python_hard\"], label=\"Sample program\", value=\"python_hard\")\n",
" #select model and language\n",
" with gr.Row():\n",
" with gr.Column():\n",
" model = gr.Dropdown([\"GPT\", \"Claude\", \"CodeQwen\"], label=\"Select model\", value=\"GPT\")\n",
" language = gr.Dropdown([\"C++\",\"Java\"], label=\"Select language\", value=\"C++\")\n",
" with gr.Row():\n",
" convert = gr.Button(\"Convert\")\n",
" #Code execution\n",
" with gr.Row():\n",
" python_run = gr.Button(\"Run Python\")\n",
" converted_run = gr.Button(\"Run converted code\")\n",
" with gr.Row():\n",
" python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n",
" output = gr.TextArea(label=\"Converted code result:\", elem_classes=[\"cpp\"])\n",
" \n",
" # Function to convert Python code based on language\n",
" def convert_code(python_code, model, selected_language):\n",
" if selected_language == \"C++\":\n",
" for chunk in optimize(python_code, model, \"cpp\"):\n",
" yield chunk # Stream each chunk\n",
" elif selected_language == \"Java\":\n",
" for chunk in optimize(python_code, model, \"java\"):\n",
" yield chunk\n",
" return \"\"\n",
"\n",
" # Function to execute converted code\n",
" def run_code(converted_code, selected_language):\n",
" if selected_language == \"C++\":\n",
" return execute_cpp(converted_code)\n",
" elif selected_language == \"Java\":\n",
" return execute_java(converted_code)\n",
" return \"Invalid language selection\"\n",
"\n",
" sample_program.change(select_sample_program, inputs=[sample_program], outputs=[python])\n",
" convert.click(convert_code, inputs=[python, model, language], outputs=[converted_code])\n",
" converted_run.click(run_code, inputs=[converted_code, language], outputs=[output]) \n",
" python_run.click(execute_python, inputs=[python], outputs=[python_out])\n",
"\n",
"ui.launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9d0ad093-425b-488e-8c3f-67f729dd9c06",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|