Spaces:
Sleeping
Sleeping
File size: 33,975 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "ykDDGx1cjYlh"
},
"source": [
"# **DocuPy** \n",
"### _\"Automate Documentation, Comments, and Unit Tests for Python Code\"_ \n",
"\n",
"## Overview \n",
"DocuPy is a Gradio-powered tool designed to automate essential but time-consuming Python development tasks. It streamlines documentation, unit testing, and Python-to-C++ code conversion with AI-driven assistance. \n",
"\n",
"### Key Features \n",
"✅ **Auto-Generate Docstrings & Comments** – Instantly improve code clarity and maintainability. \n",
"✅ **Unit Test Generation** – Ensure reliability with AI-generated test cases. \n",
"✅ **Python to C++ Conversion** – Seamlessly translate Python code to C++ with execution support. \n",
"\n",
"With an intuitive tab-based UI, DocuPy enhances productivity for developers of all levels. Whether you're documenting functions, validating code with tests, or exploring C++ conversions, this tool lets you focus on coding while it handles the rest. \n",
"\n",
"🔗 **Check out the repo**: [GitHub Repo](https://github.com/emads22/DocuPy) \n",
"\n",
"💡 **Have insights, feedback, or ideas?** Feel free to reach out. \n",
"\n",
"[<img src=\"https://img.shields.io/badge/GitHub-Emad-blue?logo=github\" width=\"150\">](https://github.com/emads22)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you're running this notebook on **`Google Colab`**, ensure you install the required libraries by running the following command:\n",
"\n",
"```bash\n",
"!pip install -q openai anthropic python-dotenv gradio huggingface_hub transformers\n",
"```\n",
"Otherwise, make sure to activate the Conda environment `docupy` that already includes these modules:\n",
"\n",
"```bash\n",
"conda activate docupy\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6wIpBtNPjXc8"
},
"outputs": [],
"source": [
"# Uncomment the following command when running on Google Colab\n",
"# !pip install -q openai anthropic python-dotenv gradio huggingface_hub transformers "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "T-cTBf9amBxf"
},
"source": [
"## Setup and Install Dependencies\n",
"\n",
"- Start by installing all necessary libraries."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "aIHWC7xpk87X"
},
"outputs": [],
"source": [
"# imports\n",
"import os\n",
"import io\n",
"import sys\n",
"import subprocess\n",
"import openai\n",
"import anthropic\n",
"import google.generativeai as google_genai\n",
"import gradio as gr\n",
"from openai import OpenAI\n",
"# from google.colab import userdata\n",
"from dotenv import load_dotenv\n",
"from pathlib import Path\n",
"from huggingface_hub import login, InferenceClient\n",
"from transformers import AutoTokenizer"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LZQbXR3dmZy4"
},
"source": [
"## Add Secrets to the Colab Notebook\n",
"\n",
"- Add the API keys for OpenAI, Claude, and Gemini to authenticate and access their respective models and services.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "AadABekBm4fV"
},
"outputs": [],
"source": [
"# # Log in to Hugging Face using the token and add it to git credentials\n",
"# hf_token = userdata.get('HF_TOKEN')\n",
"# login(token=hf_token, add_to_git_credential=True)\n",
"\n",
"# # Endpoint URL for accessing the Code Qwen model through Hugging Face\n",
"# CODE_QWEN_URL = userdata.get('CODE_QWEN_URL')\n",
"\n",
"# # Initialize inference clients with every model using API keys\n",
"# gpt = openai.OpenAI(api_key=userdata.get('OPENAI_API_KEY'))\n",
"# claude = anthropic.Anthropic(api_key=userdata.get('ANTHROPIC_API_KEY'))\n",
"# google_genai.configure(api_key=userdata.get('GOOGLE_API_KEY'))\n",
"# code_qwen = InferenceClient(CODE_QWEN_URL, token=hf_token)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ej3JNfh_wc0m"
},
"source": [
"## Alternatively, if not running on Google Colab, Load Environment Variables for API Keys\n",
"\n",
"- Use the `load_dotenv()` function to securely load API keys from a `.env` file.\n",
"- Ensure that the `.env` file is located in the same directory as your script or Jupyter Notebook.\n",
"- The `.env` file should include the required API keys for OpenAI, Claude, and Gemini."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "av9X9XpQw0Vd"
},
"outputs": [],
"source": [
"load_dotenv()\n",
"\n",
"# Log in to Hugging Face using the token and add it to git credentials\n",
"hf_token = os.getenv('HF_TOKEN')\n",
"login(token=hf_token, add_to_git_credential=True)\n",
"\n",
"# Endpoint URL for accessing the Code Qwen model through Hugging Face\n",
"CODE_QWEN_URL = os.getenv('CODE_QWEN_URL')\n",
"\n",
"# Initialize inference clients with every model using API keys\n",
"gpt = openai.OpenAI(api_key=os.getenv('OPENAI_API_KEY'))\n",
"claude = anthropic.Anthropic(api_key=os.getenv('ANTHROPIC_API_KEY'))\n",
"google_genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))\n",
"code_qwen = InferenceClient(CODE_QWEN_URL, token=hf_token)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lvEhCuQjrTYu"
},
"source": [
"## Define Required Constants\n",
"\n",
"- Initialize the essential constants required for the application's functionality.\n",
"- Configure the system and user prompts specific to each task or feature.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "AKEBKKmAowt2"
},
"outputs": [],
"source": [
"# Models\n",
"OPENAI_MODEL = \"gpt-4o\"\n",
"CLAUDE_MODEL = \"claude-3-5-sonnet-20240620\"\n",
"GEMINI_MODEL = \"gemini-1.5-pro\"\n",
"CODE_QWEN_MODEL = \"Qwen/CodeQwen1.5-7B-Chat\"\n",
"\n",
"MODELS_IN_USE = [\"GPT\", \"Claude\", \"Gemini\", \"CodeQwen\"]\n",
"\n",
"MAX_TOKENS = 2000\n",
"\n",
"ACTION_A = \"commenting\"\n",
"ACTION_B = \"testing\"\n",
"ACTION_C = \"converting\"\n",
"\n",
"# Define and create the path for the \"temp_files\" directory within the current script's directory\n",
"TEMP_DIR = Path.cwd() / \"temp_files\"\n",
"TEMP_DIR.mkdir(parents=True, exist_ok=True)\n",
"\n",
"PYTHON_SCRIPT_EASY = \"\"\"\n",
"import time\n",
"\n",
"def reverse_string(s):\n",
" return s[::-1]\n",
"\n",
"if __name__ == \"__main__\":\n",
" start_time = time.time()\n",
" text = \"Hello, World!\"\n",
" print(f\"- Original string: {text}\")\n",
" print(\"- Reversed string:\", reverse_string(text))\n",
" execution_time = time.time() - start_time \n",
" print(f\"\\\\n=> Execution Time: {execution_time:.6f} seconds\")\n",
"\"\"\"\n",
"\n",
"PYTHON_SCRIPT_INTERMEDIATE = \"\"\"\n",
"import time\n",
"\n",
"def is_palindrome(s):\n",
" s = s.lower().replace(\" \", \"\") \n",
" return s == s[::-1]\n",
"\n",
"if __name__ == \"__main__\":\n",
" start_time = time.time()\n",
" text = \"Racecar\"\n",
" if is_palindrome(text):\n",
" print(f\"- '{text}' is a palindrome!\")\n",
" else:\n",
" print(f\"- '{text}' is Not a palindrome.\")\n",
" execution_time = time.time() - start_time \n",
" print(f\"\\\\n=> Execution Time: {execution_time:.6f} seconds\")\n",
"\"\"\"\n",
"\n",
"PYTHON_SCRIPT_HARD = \"\"\"\n",
"import time\n",
"\n",
"def generate_primes(limit):\n",
" primes = []\n",
" for num in range(2, limit + 1):\n",
" if all(num % p != 0 for p in primes):\n",
" primes.append(num)\n",
" return primes\n",
"\n",
"if __name__ == \"__main__\":\n",
" start_time = time.time()\n",
" n = 20\n",
" print(f\"- Generating primes up to: {n}\")\n",
" print(\"- Prime numbers:\", generate_primes(n))\n",
" execution_time = time.time() - start_time \n",
" print(f\"\\\\n=> Execution Time: {execution_time:.6f} seconds\")\n",
"\"\"\"\n",
"\n",
"PYTHON_SCRIPTS = {\n",
" \"reverse_string\" : PYTHON_SCRIPT_EASY,\n",
" \"is_palindrome\" : PYTHON_SCRIPT_INTERMEDIATE,\n",
" \"generate_primes\" : PYTHON_SCRIPT_HARD,\n",
" \"custom\" : \"\"\"\n",
"# Write your custom Python script here\n",
"if __name__ == \"__main__\":\n",
" print(\"Hello, World!\")\n",
"\"\"\"\n",
"}\n",
"\n",
"# Relative system prompts\n",
"SYSTEM_PROMPT_COMMENTS = \"\"\"\n",
"You are an AI model specializing in enhancing Python code documentation.\n",
"Generate detailed and precise docstrings and inline comments for the provided Python code.\n",
"Ensure the docstrings clearly describe the purpose, parameters, and return values of each function.\n",
"Inline comments should explain complex or non-obvious code segments.\n",
"Do not include any introductions, explanations, conclusions, or additional context.\n",
"Return only the updated Python code enclosed within ```python ... ``` for proper formatting and syntax highlighting.\n",
"\"\"\"\n",
"\n",
"SYSTEM_PROMPT_TESTS = \"\"\"\n",
"You are an AI model specializing in generating comprehensive unit tests for Python code.\n",
"Create Python unit tests that thoroughly validate the functionality of the given code.\n",
"Use the `unittest` framework and ensure edge cases and error conditions are tested.\n",
"Do not include any comments, introductions, explanations, conclusions, or additional context.\n",
"Return only the unit test code enclosed within ```python ... ``` for proper formatting and syntax highlighting.\n",
"\"\"\"\n",
"\n",
"SYSTEM_PROMPT_CONVERT = \"\"\"\n",
"You are an AI model specializing in high-performance code translation.\n",
"Translate the given Python code into equivalent, optimized C++ code.\n",
"Focus on:\n",
"- Using efficient data structures and algorithms.\n",
"- Avoiding unnecessary memory allocations and computational overhead.\n",
"- Ensuring minimal risk of integer overflow by using appropriate data types.\n",
"- Leveraging the C++ Standard Library (e.g., `<vector>`, `<algorithm>`) for performance and readability.\n",
"Produce concise and efficient C++ code that matches the functionality of the original Python code.\n",
"Do not include any comments, introductions, explanations, conclusions, or additional context..\n",
"Return only the C++ code enclosed within ```cpp ... ``` for proper formatting and syntax highlighting.\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JJ1zttf7ANqD"
},
"outputs": [],
"source": [
"# Relative user prompts\n",
"def user_prompt_comments(python_code):\n",
" user_prompt = f\"\"\"\n",
"Add detailed docstrings and inline comments to the following Python code:\n",
"\n",
"```python\n",
"{python_code}\n",
"```\n",
"\"\"\"\n",
" return user_prompt\n",
"\n",
"def user_prompt_tests(python_code):\n",
" user_prompt = f\"\"\"\n",
"Generate unit tests for the following Python code using the `unittest` framework:\n",
"\n",
"```python\n",
"{python_code}\n",
"```\n",
"\"\"\"\n",
" return user_prompt\n",
"\n",
"def user_prompt_convert(python_code):\n",
" user_prompt = f\"\"\"\n",
"Convert the following Python code into C++:\n",
"\n",
"```python\n",
"{python_code}\n",
"``` \n",
"\"\"\"\n",
" return user_prompt"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tqrOO_qsCRkd"
},
"source": [
"### Define the Tab Functions\n",
"\n",
"- Develop dedicated functions for each service: documenting Python code, generating unit tests, and converting Python to C++.\n",
"- Structure each function to handle user input, process it using the selected AI model, and display the generated output seamlessly.\n",
"- Ensure the functionality of each tab aligns with its specific purpose, providing an intuitive and efficient user experience.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HBsBrq3G94ul"
},
"outputs": [],
"source": [
"def stream_gpt(system_prompt, user_prompt):\n",
" stream = gpt.chat.completions.create(\n",
" model=OPENAI_MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ],\n",
" stream=True)\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" reply += chunk.choices[0].delta.content or \"\"\n",
" yield reply.replace(\"```python\\n\", \"\").replace(\"```cpp\\n\", \"\").replace(\"```\", \"\")\n",
"\n",
"def stream_claude(system_prompt, user_prompt):\n",
" response = claude.messages.stream(\n",
" model=CLAUDE_MODEL,\n",
" max_tokens=MAX_TOKENS,\n",
" system=system_prompt,\n",
" messages=[{\"role\": \"user\", \"content\": user_prompt}],\n",
" )\n",
" reply = \"\"\n",
" with response as stream:\n",
" for text in stream.text_stream:\n",
" reply += text\n",
" yield reply.replace(\"```python\\n\", \"\").replace(\"```cpp\\n\", \"\").replace(\"```\", \"\")\n",
"\n",
"def stream_gemini(system_prompt, user_prompt):\n",
" gemini = google_genai.GenerativeModel(\n",
" model_name=GEMINI_MODEL,\n",
" system_instruction=system_prompt\n",
" )\n",
" stream = gemini.generate_content(\n",
" contents=user_prompt,\n",
" stream=True\n",
" )\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" reply += chunk.text or \"\"\n",
" yield reply.replace(\"```python\\n\", \"\").replace(\"```cpp\\n\", \"\").replace(\"```\", \"\")\n",
"\n",
"def stream_code_qwen(system_prompt, user_prompt):\n",
" tokenizer = AutoTokenizer.from_pretrained(CODE_QWEN_MODEL)\n",
" model_input = tokenizer.apply_chat_template(\n",
" conversation=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ],\n",
" tokenize=False,\n",
" add_generation_prompt=True\n",
" )\n",
" stream = code_qwen.text_generation(\n",
" prompt=model_input,\n",
" stream=True,\n",
" details=True,\n",
" max_new_tokens=MAX_TOKENS\n",
" )\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" reply += chunk.token.text or \"\"\n",
" yield reply.replace(\"```python\\n\", \"\").replace(\"```cpp\\n\", \"\").replace(\"```\", \"\")\n",
"\n",
"def set_prompts(user_input, action):\n",
" action = action.lower()\n",
"\n",
" if action == ACTION_A.lower():\n",
" system_prompt = SYSTEM_PROMPT_COMMENTS\n",
" user_prompt = user_prompt_comments(user_input)\n",
" elif action == ACTION_B.lower():\n",
" system_prompt = SYSTEM_PROMPT_TESTS\n",
" user_prompt = user_prompt_tests(user_input)\n",
" elif action == ACTION_C.lower():\n",
" system_prompt = SYSTEM_PROMPT_CONVERT\n",
" user_prompt = user_prompt_convert(user_input)\n",
" else:\n",
" return None, None\n",
" \n",
" return system_prompt, user_prompt\n",
"\n",
"def stream_response(user_input, model, action):\n",
" system_prompt, user_prompt = set_prompts(user_input, action)\n",
" if not all((system_prompt, user_prompt)):\n",
" raise ValueError(\"Unknown Action\")\n",
"\n",
" match model:\n",
" case \"GPT\":\n",
" yield from stream_gpt(system_prompt, user_prompt)\n",
"\n",
" case \"Claude\":\n",
" yield from stream_claude(system_prompt, user_prompt)\n",
"\n",
" case \"Gemini\":\n",
" yield from stream_gemini(system_prompt, user_prompt)\n",
"\n",
" case \"CodeQwen\":\n",
" yield from stream_code_qwen(system_prompt, user_prompt)\n",
" \n",
"def generate_comments(python_code, selected_model):\n",
" for model in MODELS_IN_USE:\n",
" if model == selected_model:\n",
" yield from stream_response(python_code, model, action=ACTION_A)\n",
" return # Exit the function immediately after exhausting the generator\n",
" raise ValueError(\"Unknown Model\")\n",
"\n",
"def generate_tests(python_code, selected_model):\n",
" for model in MODELS_IN_USE:\n",
" if model == selected_model:\n",
" yield from stream_response(python_code, model, action=ACTION_B)\n",
" return # Exit the function immediately after exhausting the generator\n",
" raise ValueError(\"Unknown Model\")\n",
"\n",
"def convert_code(python_code, selected_model):\n",
" for model in MODELS_IN_USE:\n",
" if model == selected_model:\n",
" yield from stream_response(python_code, model, action=ACTION_C)\n",
" return # Exit the function immediately after exhausting the generator\n",
" raise ValueError(\"Unknown Model\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Running Code Functions\n",
"\n",
"- Functions that dynamically execute Python or C++ code provided as a string and captures its output.\n",
"- This is useful for evaluating Python or C++ code snippets and returning their results programmatically.\n",
"\n",
"### IMPORTANT WARNING:\n",
"The functions that dynamically execute Python or C++ code provided as input.\n",
"While powerful, this is extremely dangerous if the input code is not trusted.\n",
"Any malicious code can be executed, including:\n",
" - Deleting files or directories\n",
" - Stealing sensitive data (e.g., accessing environment variables or credentials)\n",
" - Running arbitrary commands that compromise the system\n",
"\n",
"Sharing this notebook with this code snippet can allow attackers to exploit this functionality \n",
"by passing harmful code as input. \n",
"\n",
"If you share this notebook or use this function:\n",
" 1. Only accept input from trusted sources.\n",
" 2. Consider running the code in a sandboxed environment (e.g., virtual machine or container).\n",
" 3. Avoid using this function in publicly accessible applications or notebooks without strict validation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def run_python_exec(code):\n",
" try:\n",
" # Capture stdout using StringIO\n",
" output = io.StringIO()\n",
"\n",
" # Redirect stdout to StringIO\n",
" sys.stdout = output\n",
"\n",
" # Execute the provided Python code\n",
" exec(code)\n",
" finally:\n",
" # Restore original stdout\n",
" sys.stdout = sys.__stdout__\n",
"\n",
" # Return the captured output\n",
" return output.getvalue()\n",
"\n",
"# Improved running python function\n",
"def run_python(code):\n",
" # Save the Python code to a file\n",
" with open(TEMP_DIR / \"python_code.py\", \"w\") as python_file:\n",
" python_file.write(code)\n",
"\n",
" try:\n",
" # Execute the Python code\n",
" result = subprocess.run(\n",
" [\"python\", str(TEMP_DIR / \"python_code.py\")],\n",
" check=True, text=True, capture_output=True\n",
" )\n",
"\n",
" # Return the program's output\n",
" return result.stdout\n",
"\n",
" except subprocess.CalledProcessError as e:\n",
" # Handle compilation or execution errors\n",
" return f\"An error occurred during execution:\\n{e.stderr}\"\n",
"\n",
" finally:\n",
" # Clean up: Delete the Python code file and executable\n",
" file_path = TEMP_DIR / \"python_code.py\"\n",
" if file_path.exists():\n",
" file_path.unlink()\n",
"\n",
"def run_cpp(code):\n",
" # Save the C++ code to a file\n",
" with open(TEMP_DIR / \"cpp_code.cpp\", \"w\") as cpp_file:\n",
" cpp_file.write(code)\n",
"\n",
" try:\n",
" # Compile the C++ code\n",
" subprocess.run(\n",
" [\"g++\", \"-o\", str(TEMP_DIR / \"cpp_code\"), str(TEMP_DIR / \"cpp_code.cpp\")],\n",
" check=True, text=True, capture_output=True\n",
" )\n",
"\n",
" # Execute the compiled program\n",
" result = subprocess.run(\n",
" [str(TEMP_DIR / \"cpp_code\")],\n",
" check=True, text=True, capture_output=True\n",
" )\n",
"\n",
" # Return the program's output\n",
" return result.stdout\n",
"\n",
" except subprocess.CalledProcessError as e:\n",
" # Handle compilation or execution errors\n",
" error_context = \"during compilation\" if \"cpp_code.cpp\" in e.stderr else \"during execution\"\n",
" return f\"An error occurred {error_context}:\\n{e.stderr}\"\n",
"\n",
" finally:\n",
" # Clean up: Delete the C++ source file and executable\n",
" for filename in [\"cpp_code.cpp\", \"cpp_code\", \"cpp_code.exe\"]:\n",
" file_path = TEMP_DIR / filename\n",
" if file_path.exists():\n",
" file_path.unlink()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Vude1jzPrgT2"
},
"source": [
"## Develop a User-Friendly Interface with Gradio\n",
"\n",
"- Design a clean, intuitive, and user-centric interface using Gradio.\n",
"- Ensure responsiveness and accessibility to provide a seamless and efficient user experience.\n",
"- Focus on simplicity while maintaining functionality to cater to diverse user needs.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Eh-sWFZVBb_y"
},
"outputs": [],
"source": [
"# CSS styles for customizing the appearance of the Gradio UI elements.\n",
"css = \"\"\"\n",
".python { \n",
" background-color: #377ef0; \n",
" color: #ffffff; \n",
" padding: 0.5em; \n",
" border-radius: 5px; /* Slightly rounded corners */\n",
"}\n",
".cpp { \n",
" background-color: #00549e; \n",
" color: #ffffff; \n",
" padding: 0.5em; \n",
" border-radius: 5px; \n",
"}\n",
".model { \n",
" background-color: #17a2b8; /* Vibrant cyan color */\n",
" color: white; \n",
" font-size: 1.2em; \n",
" padding: 0.5em; \n",
" border: none; \n",
" border-radius: 5px; \n",
" cursor: pointer; \n",
"}\n",
".button { \n",
" height: 4em; \n",
" font-size: 1.5em; \n",
" padding: 0.5em 1em; \n",
" background-color: #e67e22; /* Vibrant orange */\n",
" color: white; \n",
" border: none; \n",
" border-radius: 5px; \n",
" cursor: pointer; \n",
"}\n",
".run-button { \n",
" height: 3em; \n",
" font-size: 1.5em; \n",
" padding: 0.5em 1em; \n",
" background-color: #16a085; /* Rich teal color */\n",
" color: white; \n",
" border: none; \n",
" border-radius: 5px; \n",
" cursor: pointer; \n",
"}\n",
".button:hover, .run-button:hover {\n",
" background-color: #2c3e50; /* Dark navy for hover effect */\n",
" color: #fff; \n",
"}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "M_v-j-B_sQHe"
},
"outputs": [],
"source": [
"# Tab to Document Code with Docstrings and Comments\n",
"def docs_comments_ui():\n",
" with gr.Tab(\"Docstrings & Comments\"):\n",
" gr.Markdown(\"\"\"\n",
" ## Document Code with Docstrings and Comments\n",
" This tab allows you to automatically generate docstrings and inline comments for your Python code.\n",
" - Paste your Python code into the **`Python Code`** textbox.\n",
" - Select your preferred model (GPT, Claude, Gemini, or CodeQwen) to process the code.\n",
" - Click the **`Add Docstrings & Comments`** button to generate well-documented Python code.\n",
" The generated code will appear in the **`Python Code with Docstrings and Comments`** textarea.\n",
" \"\"\")\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python Code:\", lines=20, value=PYTHON_SCRIPTS[\"custom\"], elem_classes=[\"python\"])\n",
" python_with_comments = gr.TextArea(label=\"Python Code with Docstrings and Comments:\", interactive=True, lines=20, elem_classes=[\"python\"])\n",
" with gr.Row():\n",
" python_script = gr.Dropdown(choices=list(PYTHON_SCRIPTS.keys()), label=\"Select a Python script\", value=\"custom\", elem_classes=[\"model\"])\n",
" comments_btn = gr.Button(\"Add Docstrings & Comments\", elem_classes=[\"button\"])\n",
" model = gr.Dropdown([\"GPT\", \"Claude\", \"Gemini\", \"CodeQwen\"], label=\"Select Model\", value=\"GPT\", elem_classes=[\"model\"])\n",
" \n",
" python_script.change(\n",
" fn=lambda script: PYTHON_SCRIPTS[script],\n",
" inputs=[python_script],\n",
" outputs=[python]\n",
" )\n",
" \n",
" comments_btn.click(\n",
" fn=lambda: \"\",\n",
" inputs=None,\n",
" outputs=[python_with_comments]\n",
" ).then(\n",
" fn=generate_comments,\n",
" inputs=[python, model],\n",
" outputs=[python_with_comments]\n",
" )\n",
"\n",
" return python_with_comments"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "WDjJp1eXtQzY"
},
"outputs": [],
"source": [
"# Tab to Generate Comprehensive Unit Tests\n",
"def unit_tests_ui():\n",
" with gr.Tab(\"Unit Tests\"):\n",
" gr.Markdown(\"\"\"\n",
" ## Generate Comprehensive Unit Tests\n",
" This tab helps you create unit tests for your Python code automatically.\n",
" - Paste your Python code into the **`Python Code`** textbox.\n",
" - Choose a model (GPT, Claude, Gemini, or CodeQwen) to generate the unit tests.\n",
" - Click the **`Generate Unit Tests`** button, and the generated unit tests will appear in the **`Python Code with Unit Tests`** textarea.\n",
" Use these unit tests to ensure your code behaves as expected.\n",
" \"\"\")\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python Code:\", lines=20, value=PYTHON_SCRIPTS[\"custom\"], elem_classes=[\"python\"])\n",
" python_unit_tests = gr.TextArea(label=\"Python Code with Unit Tests:\", interactive=True, lines=20, elem_classes=[\"python\"])\n",
" with gr.Row():\n",
" python_script = gr.Dropdown(choices=list(PYTHON_SCRIPTS.keys()), label=\"Select a Python script\", value=\"custom\", elem_classes=[\"model\"])\n",
" unit_tests_btn = gr.Button(\"Generate Unit Tests\", elem_classes=[\"button\"])\n",
" model = gr.Dropdown([\"GPT\", \"Claude\", \"Gemini\", \"CodeQwen\"], label=\"Select Model\", value=\"GPT\", elem_classes=[\"model\"])\n",
" \n",
" python_script.change(\n",
" fn=lambda script: PYTHON_SCRIPTS[script],\n",
" inputs=[python_script],\n",
" outputs=[python]\n",
" )\n",
" \n",
" unit_tests_btn.click(\n",
" fn=lambda: \"\",\n",
" inputs=None,\n",
" outputs=[python_unit_tests]\n",
" ).then(\n",
" fn=generate_tests,\n",
" inputs=[python, model],\n",
" outputs=[python_unit_tests]\n",
" )\n",
"\n",
" return python_unit_tests"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "x57SZeLi9NyV"
},
"outputs": [],
"source": [
"# Tab to Convert Python Code to C++\n",
"def python_to_cpp_ui():\n",
" with gr.Tab(\"Python to C++\"):\n",
" gr.Markdown(\"\"\"\n",
" ## Convert Python Code to C++\n",
" This tab facilitates the conversion of Python code into C++.\n",
" - Paste your Python code into the **`Python Code`** textbox.\n",
" - Select your preferred model (GPT, Claude, Gemini, or CodeQwen) to perform the conversion.\n",
" - Click **`Convert to C++`** to see the equivalent C++ code in the **`C++ Code`** textbox.\n",
" Additional Features:\n",
" - You can execute the Python or C++ code directly using the respective **`Run Python`** or **`Run C++`** buttons.\n",
" - The output will appear in the respective result text areas below.\n",
" \"\"\")\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python Code:\", lines=20, value=PYTHON_SCRIPTS[\"custom\"], elem_classes=[\"python\"])\n",
" cpp = gr.Textbox(label=\"C++ Code:\", interactive=True, lines=20, elem_classes=[\"cpp\"])\n",
" with gr.Row():\n",
" python_script = gr.Dropdown(choices=list(PYTHON_SCRIPTS.keys()), label=\"Select a Python script\", value=\"custom\", elem_classes=[\"model\"])\n",
" convert_btn = gr.Button(\"Convert to C++\", elem_classes=[\"button\"])\n",
" model = gr.Dropdown([\"GPT\", \"Claude\", \"Gemini\", \"CodeQwen\"], label=\"Select Model\", value=\"GPT\", elem_classes=[\"model\"])\n",
" with gr.Row():\n",
" run_python_btn = gr.Button(\"Run Python\", elem_classes=[\"run-button\"])\n",
" run_cpp_btn = gr.Button(\"Run C++\", elem_classes=[\"run-button\"])\n",
" with gr.Row():\n",
" python_out = gr.TextArea(label=\"Python Result:\", lines=10, elem_classes=[\"python\"])\n",
" cpp_out = gr.TextArea(label=\"C++ Result:\", lines=10, elem_classes=[\"cpp\"])\n",
"\n",
" python_script.change(\n",
" fn=lambda script: PYTHON_SCRIPTS[script],\n",
" inputs=[python_script],\n",
" outputs=[python]\n",
" )\n",
" \n",
" convert_btn.click(\n",
" fn=lambda: \"\",\n",
" inputs=None,\n",
" outputs=[cpp]\n",
" ).then(\n",
" fn=convert_code,\n",
" inputs=[python, model],\n",
" outputs=[cpp]\n",
" )\n",
" run_python_btn.click(run_python, inputs=[python], outputs=[python_out])\n",
" run_cpp_btn.click(run_cpp, inputs=[cpp], outputs=[cpp_out])\n",
"\n",
" return cpp, python_out, cpp_out"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 645
},
"id": "n8ZdDrOrrbl-",
"outputId": "08350d69-569e-4947-8da1-d755e9a2678f"
},
"outputs": [],
"source": [
"# Combine the tabs into the main UI and handle tab switching\n",
"with gr.Blocks(css=css) as main_ui:\n",
" with gr.Tabs() as tabs:\n",
" comments_output = docs_comments_ui()\n",
" tests_output = unit_tests_ui()\n",
" cpp_output, python_out, cpp_out = python_to_cpp_ui()\n",
"\n",
" # Reset outputs on tab switch\n",
" tabs.select(\n",
" fn=lambda: [\"\", \"\", \"\", \"\", \"\"],\n",
" inputs=None,\n",
" outputs=[comments_output, \n",
" tests_output, \n",
" cpp_output, python_out, cpp_out]\n",
" )\n",
"\n",
"# Launch the app\n",
"main_ui.launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|