File size: 17,379 Bytes
5fdb69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "dfe37963-1af6-44fc-a841-8e462443f5e6",
   "metadata": {},
   "source": [
    "## Expert Knowledge Worker\n",
    "\n",
    "Features:\n",
    "- A question answering agent that is an expert knowledge worker\n",
    "- To be used by employees of Insurellm, an Insurance Tech company\n",
    "- The agent needs to be accurate and the solution should be low cost.\n",
    "\n",
    "This project will use RAG (Retrieval Augmented Generation) to ensure our question/answering assistant has high accuracy.\n",
    "\n",
    "Technology:\n",
    "- RAG: LangChain\n",
    "- Embedding model: OpenAIEmbeddings or HuggingFace sentence-transformers\n",
    "- Encoding method: Auto-encoding\n",
    "- Vector datastore: Chroma or FAISS\n",
    "- Vector DB visualization: Plotly\n",
    "- Dimensionality reduction technique: t-SNE\n",
    "\n",
    "# Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "802137aa-8a74-45e0-a487-d1974927d7ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "\n",
    "import os\n",
    "import glob\n",
    "from dotenv import load_dotenv\n",
    "import gradio as gr\n",
    "from langchain.document_loaders import DirectoryLoader, TextLoader\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "from langchain.schema import Document\n",
    "from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
    "from langchain.embeddings import HuggingFaceEmbeddings\n",
    "from langchain_chroma import Chroma\n",
    "from langchain.vectorstores import FAISS\n",
    "import numpy as np\n",
    "from sklearn.manifold import TSNE\n",
    "import plotly.graph_objects as go\n",
    "from langchain.memory import ConversationBufferMemory\n",
    "from langchain.chains import ConversationalRetrievalChain"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7187c181-5b17-4df7-b298-b7cb2b6d09f7",
   "metadata": {},
   "source": [
    "# Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "58c85082-e417-4708-9efe-81a5d55d1424",
   "metadata": {},
   "outputs": [],
   "source": [
    "MODEL = \"gpt-4o-mini\"\n",
    "db_name = \"vector_db\"\n",
    "db_type = \"Chroma\"\n",
    "# db_type = \"FAISS\"\n",
    "embed_type = \"OpenAIEmbeddings\"\n",
    "# embed_type = \"sentence-transformers\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ee78efcb-60fe-449e-a944-40bab26261af",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables\n",
    "\n",
    "load_dotenv(override=True)\n",
    "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a2f0866b-5cfb-4ecd-87d1-6da872887dcd",
   "metadata": {},
   "source": [
    "# Create Knowledge Base for RAG\n",
    "\n",
    "## Load Company Documents\n",
    "\n",
    "Uses LangChain to read in a Knowledge Base of documents and to divide up documents into overlaping chunks."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "730711a9-6ffe-4eee-8f48-d6cfb7314905",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read in documents using LangChain's loaders\n",
    "# Take everything in all the sub-folders of our knowledgebase\n",
    "\n",
    "folders = glob.glob(\"../knowledge-base/*\")\n",
    "text_loader_kwargs = {'encoding': 'utf-8'}\n",
    "# text_loader_kwargs={'autodetect_encoding': True}\n",
    "\n",
    "documents = []\n",
    "for folder in folders:\n",
    "    doc_type = os.path.basename(folder)\n",
    "    loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)\n",
    "    folder_docs = loader.load()\n",
    "    for doc in folder_docs:\n",
    "        doc.metadata[\"doc_type\"] = doc_type\n",
    "        documents.append(doc)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7310c9c8-03c1-4efc-a104-5e89aec6db1a",
   "metadata": {},
   "outputs": [],
   "source": [
    "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
    "chunks = text_splitter.split_documents(documents)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cd06e02f-6d9b-44cc-a43d-e1faa8acc7bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "len(chunks)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2c54b4b6-06da-463d-bee7-4dd456c2b887",
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_types = set(chunk.metadata['doc_type'] for chunk in chunks)\n",
    "print(f\"Document types found: {', '.join(doc_types)}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "77f7d2a6-ccfa-425b-a1c3-5e55b23bd013",
   "metadata": {},
   "source": [
    "## Vector Embeddings\n",
    "\n",
    "Convert chunks of text into Vectors using OpenAIEmbeddings and store the Vectors in Chroma (or FAISS)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "78998399-ac17-4e28-b15f-0b5f51e6ee23",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
    "\n",
    "embeddings = None\n",
    "# OpenAIEmbeddings is OpenAI's vector embedding models\n",
    "if embed_type == \"OpenAIEmbeddings\":\n",
    "    embeddings = OpenAIEmbeddings()\n",
    "\n",
    "# sentence-transformers is a free Vector embeddings model from HuggingFace\n",
    "elif embed_type == \"sentence-transformers\":\n",
    "    embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")\n",
    "\n",
    "if embeddings is None:\n",
    "    print(\"ERROR: embeddings not set. Check embed_type is set to a valid model\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "64768521-a775-472c-83c5-0c0d715d44ac",
   "metadata": {},
   "source": [
    "## Create Vector Datastore"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "057868f6-51a6-4087-94d1-380145821550",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create vectorstore\n",
    "vectorstore = None\n",
    "\n",
    "# Chroma is a popular open source Vector Database based on SQLLite\n",
    "if db_type == \"Chroma\":\n",
    "    # Delete vector DB if already exists\n",
    "    if os.path.exists(db_name):\n",
    "        Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n",
    "    \n",
    "    # Create vectorstore\n",
    "    vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
    "    \n",
    "    print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")\n",
    "\n",
    "    # Get one vector and find how many dimensions it has\n",
    "    collection = vectorstore._collection\n",
    "    sample_embedding = collection.get(limit=1, include=[\"embeddings\"])[\"embeddings\"][0]\n",
    "    dimensions = len(sample_embedding)\n",
    "    print(f\"The vectors have {dimensions:,} dimensions\")\n",
    "    \n",
    "# FAISS is an in-memory vector DB from Facebook\n",
    "elif db_type == \"FAISS\":\n",
    "    # Create vectorstore\n",
    "    vectorstore = FAISS.from_documents(chunks, embedding=embeddings)\n",
    "    \n",
    "    total_vectors = vectorstore.index.ntotal\n",
    "    dimensions = vectorstore.index.d\n",
    "    print(f\"There are {total_vectors} vectors with {dimensions:,} dimensions in the vector store\")\n",
    "\n",
    "else:\n",
    "    print(\"ERROR: Vector datastore not created. Check db_type is set to a valid database\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b0d45462-a818-441c-b010-b85b32bcf618",
   "metadata": {},
   "source": [
    "# Visualizing the Vector Store\n",
    "\n",
    "Humans are not very good at visualizing things with more than 3 dimensions so to visualize a vector datastore with thousands of dimesions. We need to use techniques like projecting down to reduce the dimensions to only 2 or 3 dimensions in a way that does the best possible job at separating things out to stay faithful to the multi-dimensional representation.\n",
    "\n",
    "For example, things that are far apart in these multiple dimensions will still be far apart even when projected down to 2 dimensions.\n",
    "\n",
    "[t-distributed stochastic neighbor embedding (t-SNE)](https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding) is a nonlinear dimensionality reduction technique for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions.\n",
    "\n",
    "## Configure Visualization"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b98adf5e-d464-4bd2-9bdf-bc5b6770263b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Prework\n",
    "if db_type == \"Chroma\":\n",
    "    result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n",
    "    vectors = np.array(result['embeddings'])\n",
    "    documents = result['documents']\n",
    "    doc_types = [metadata['doc_type'] for metadata in result['metadatas']]\n",
    "    colors = [['blue', 'green', 'red', 'orange'][['products', 'employees', 'contracts', 'company'].index(t)] for t in doc_types]\n",
    "\n",
    "elif db_type == \"FAISS\":\n",
    "    vectors = []\n",
    "    documents = []\n",
    "    doc_types = []\n",
    "    colors = []\n",
    "    color_map = {'products':'blue', 'employees':'green', 'contracts':'red', 'company':'orange'}\n",
    "    \n",
    "    for i in range(total_vectors):\n",
    "        vectors.append(vectorstore.index.reconstruct(i))\n",
    "        doc_id = vectorstore.index_to_docstore_id[i]\n",
    "        document = vectorstore.docstore.search(doc_id)\n",
    "        documents.append(document.page_content)\n",
    "        doc_type = document.metadata['doc_type']\n",
    "        doc_types.append(doc_type)\n",
    "        colors.append(color_map[doc_type])\n",
    "        \n",
    "    vectors = np.array(vectors)\n",
    "\n",
    "else:\n",
    "    print(\"ERROR: Vector datastore not created. Check db_type is set to a valid database\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bb279701-0086-44aa-a2da-14341aecf529",
   "metadata": {},
   "source": [
    "## Reduce the dimensionality to 2D"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "427149d5-e5d8-4abd-bb6f-7ef0333cca21",
   "metadata": {},
   "outputs": [],
   "source": [
    "# We humans find it easier to visalize things in 2D!\n",
    "# Reduce the dimensionality of the vectors to 2D using t-SNE\n",
    "# (t-distributed stochastic neighbor embedding)\n",
    "\n",
    "tsne = TSNE(n_components=2, random_state=42)\n",
    "reduced_vectors = tsne.fit_transform(vectors)\n",
    "\n",
    "# Create the 2D scatter plot\n",
    "fig = go.Figure(data=[go.Scatter(\n",
    "    x=reduced_vectors[:, 0],\n",
    "    y=reduced_vectors[:, 1],\n",
    "    mode='markers',\n",
    "    marker=dict(size=5, color=colors, opacity=0.8),\n",
    "    text=[f\"Type: {t}<br>Text: {d[:100]}...\" for t, d in zip(doc_types, documents)],\n",
    "    hoverinfo='text'\n",
    ")])\n",
    "\n",
    "fig.update_layout(\n",
    "    title=f'2D {db_type} Vector Store Visualization',\n",
    "    scene=dict(xaxis_title='x',yaxis_title='y'),\n",
    "    width=800,\n",
    "    height=600,\n",
    "    margin=dict(r=20, b=10, l=10, t=40)\n",
    ")\n",
    "\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e2b724f3-e3ad-4d42-bfa4-a89386d6414e",
   "metadata": {},
   "source": [
    "## Reduce the dimensionality to 3D"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e1418e88-acd5-460a-bf2b-4e6efc88e3dd",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 3D representation isn't as easy to navigate\n",
    "\n",
    "tsne = TSNE(n_components=3, random_state=42)\n",
    "reduced_vectors = tsne.fit_transform(vectors)\n",
    "\n",
    "# Create the 3D scatter plot\n",
    "fig = go.Figure(data=[go.Scatter3d(\n",
    "    x=reduced_vectors[:, 0],\n",
    "    y=reduced_vectors[:, 1],\n",
    "    z=reduced_vectors[:, 2],\n",
    "    mode='markers',\n",
    "    marker=dict(size=5, color=colors, opacity=0.8),\n",
    "    text=[f\"Type: {t}<br>Text: {d[:100]}...\" for t, d in zip(doc_types, documents)],\n",
    "    hoverinfo='text'\n",
    ")])\n",
    "\n",
    "fig.update_layout(\n",
    "    title=f'3D {db_type} Vector Store Visualization',\n",
    "    scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z'),\n",
    "    width=900,\n",
    "    height=700,\n",
    "    margin=dict(r=20, b=10, l=10, t=40)\n",
    ")\n",
    "\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9468860b-86a2-41df-af01-b2400cc985be",
   "metadata": {},
   "source": [
    "# Expert Knowledge Worker\n",
    "\n",
    "Use LangChain to bring it all together by creating a conversation chain with RAG and memory.\n",
    "\n",
    "Key abstractions in LangChain:\n",
    "- LLM: represents abstraction around a model\n",
    "- Retriever: interface onto somthing like a vector store used for RAG retrieval\n",
    "- Memory: represents a history of a conversation with a chatbot in memory\n",
    "\n",
    "Because LangChain abstracts the reprentation of the LLM, retriever and memory the code is the same for any model and knowledge base.\n",
    "\n",
    "Note: ok to ignore _Deprecation Warning_ for now; LangChain are not expected to remove ConversationBufferMemory any time soon.\n",
    "\n",
    "## Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "129c7d1e-0094-4479-9459-f9360b95f244",
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a new Chat with OpenAI\n",
    "llm = ChatOpenAI(temperature=0.7, model_name=MODEL)\n",
    "\n",
    "# set up the conversation memory for the chat\n",
    "memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
    "\n",
    "# the retriever is an abstraction over the VectorStore that will be used during RAG\n",
    "retriever = vectorstore.as_retriever()\n",
    "\n",
    "# putting it together: set up the conversation chain with the GPT 4o-mini LLM, the vector store and memory\n",
    "conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "968e7bf2-e862-4679-a11f-6c1efb6ec8ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "query = \"Can you describe Insurellm in a few sentences\"\n",
    "result = conversation_chain.invoke({\"question\":query})\n",
    "print(result[\"answer\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "990a2917-562c-461a-8ce9-a8ad8ad1646d",
   "metadata": {},
   "source": [
    "## Clear Memory\n",
    "\n",
    "Clear the memory from the testing and restart conversation chain for UI."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6eb99fb-33ec-4025-ab92-b634ede03647",
   "metadata": {},
   "outputs": [],
   "source": [
    "# clear the memory and restart conversation chain for UI\n",
    "memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
    "conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bbbcb659-13ce-47ab-8a5e-01b930494964",
   "metadata": {},
   "source": [
    "## Functions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c3536590-85c7-4155-bd87-ae78a1467670",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Wrapping in a function - note that history isn't used, as the memory is in the conversation_chain\n",
    "\n",
    "def chat(message, history):\n",
    "    result = conversation_chain.invoke({\"question\": message})\n",
    "    return result[\"answer\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b655d3da-277b-45a9-8113-747314ec0889",
   "metadata": {},
   "source": [
    "## UI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b252d8c1-61a8-406d-b57a-8f708a62b014",
   "metadata": {},
   "outputs": [],
   "source": [
    "# And in Gradio:\n",
    "\n",
    "view = gr.ChatInterface(chat, type=\"messages\", examples=[\"what is insurellm?\",\"what did avery do before?\", \"does insurellm offer any products in the auto industry space?\"], title=\"Insurellm Expert Knowledge Worker\").launch(inbrowser=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5435b2b9-935c-48cd-aaf3-73a837ecde49",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}