Spaces:
Sleeping
Sleeping
File size: 11,185 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
{
"cells": [
{
"cell_type": "markdown",
"id": "c25c6e94-f3de-4367-b2bf-269ba7160977",
"metadata": {},
"source": [
"## An Expert Knowledge Worker Question-Answering Agent using RAG"
]
},
{
"cell_type": "markdown",
"id": "15169580-cf11-4dee-8ec7-3a4ef59b19ee",
"metadata": {},
"source": [
"Aims\n",
"- Reads README.md files and loads data using TextLoader\n",
"- Splits into chunks using CharacterTextSplitter\n",
"- Converts chunks into vector embeddings and creates a datastore\n",
"- 2D and 3D visualisations\n",
"- Langchain to set up a conversation retrieval chain"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "051cf881-357d-406b-8eae-1610651e40f1",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import glob\n",
"from dotenv import load_dotenv\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ccfd403a-5bdb-4a8c-b3fd-d47ae79e43f7",
"metadata": {},
"outputs": [],
"source": [
"# imports for langchain, plotly and Chroma\n",
"\n",
"from langchain.document_loaders import DirectoryLoader, TextLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.schema import Document\n",
"from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
"from langchain.embeddings import HuggingFaceEmbeddings\n",
"from langchain_chroma import Chroma\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"import numpy as np\n",
"from sklearn.manifold import TSNE\n",
"import plotly.graph_objects as go\n",
"import plotly.express as px\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2d853868-d2f6-43e1-b27c-b8e91d06b724",
"metadata": {},
"outputs": [],
"source": [
"MODEL = \"gpt-4o-mini\"\n",
"db_name = \"vector_db\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f152fc3b-0bf4-4d51-948f-95da1ebc030a",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv(override=True)\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "24e621ac-df06-4af6-a60d-a9ed7adb884a",
"metadata": {},
"outputs": [],
"source": [
"# Read in documents using LangChain's loaders\n",
"\n",
"folder = \"my-knowledge-base/\"\n",
"text_loader_kwargs={'autodetect_encoding': True}\n",
"\n",
"loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)\n",
"folder_docs = loader.load()\n",
"\n",
"for doc in folder_docs:\n",
" filename_md = os.path.basename(doc.metadata[\"source\"]) \n",
" filename, _ = os.path.splitext(filename_md) \n",
" doc.metadata[\"filename\"] = filename\n",
"\n",
"documents = folder_docs \n",
"\n",
"text_splitter = CharacterTextSplitter(chunk_size=400, chunk_overlap=200)\n",
"chunks = text_splitter.split_documents(documents)\n",
"\n",
"print(f\"Total number of chunks: {len(chunks)}\")\n",
"print(f\"Files found: {set(doc.metadata['filename'] for doc in documents)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f02f08ee-5ade-4f79-a500-045a8f1a532f",
"metadata": {},
"outputs": [],
"source": [
"# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
"\n",
"embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")\n",
"\n",
"# Delete if already exists\n",
"\n",
"if os.path.exists(db_name):\n",
" Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n",
"\n",
"# Create vectorstore\n",
"\n",
"vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
"print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f665f4d-ccb1-43fb-b901-040117925732",
"metadata": {},
"outputs": [],
"source": [
"# Let's investigate the vectors\n",
"\n",
"collection = vectorstore._collection\n",
"count = collection.count()\n",
"\n",
"sample_embedding = collection.get(limit=1, include=[\"embeddings\"])[\"embeddings\"][0]\n",
"dimensions = len(sample_embedding)\n",
"print(f\"There are {count:,} vectors with {dimensions:,} dimensions in the vector store\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6208a971-e8b7-48bc-be7a-6dcb82967fd2",
"metadata": {},
"outputs": [],
"source": [
"# pre work\n",
"\n",
"result = collection.get(include=['embeddings','documents','metadatas'])\n",
"vectors = np.array(result['embeddings']) \n",
"documents = result['documents']\n",
"metadatas = result['metadatas']\n",
"filenames = [metadata['filename'] for metadata in metadatas]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eb27bc8a-453b-4b19-84b4-dc495bb0e544",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"def random_color():\n",
" return f\"rgb({random.randint(0,255)},{random.randint(0,255)},{random.randint(0,255)})\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "78db67e5-ef10-4581-b8ac-3e0281ceba45",
"metadata": {},
"outputs": [],
"source": [
"def show_embeddings_2d(result):\n",
" vectors = np.array(result['embeddings']) \n",
" documents = result['documents']\n",
" metadatas = result['metadatas']\n",
" filenames = [metadata['filename'] for metadata in metadatas]\n",
" filenames_unique = sorted(set(filenames))\n",
"\n",
" # color assignment\n",
" color_map = {name: random_color() for name in filenames_unique}\n",
" colors = [color_map[name] for name in filenames]\n",
"\n",
" tsne = TSNE(n_components=2, random_state=42,perplexity=4)\n",
" reduced_vectors = tsne.fit_transform(vectors)\n",
"\n",
" # Create the 2D scatter plot\n",
" fig = go.Figure(data=[go.Scatter(\n",
" x=reduced_vectors[:, 0],\n",
" y=reduced_vectors[:, 1],\n",
" mode='markers',\n",
" marker=dict(size=5,color=colors, opacity=0.8),\n",
" text=[f\"Type: {t}<br>Text: {d[:100]}...\" for t, d in zip(filenames, documents)],\n",
" hoverinfo='text'\n",
" )])\n",
"\n",
" fig.update_layout(\n",
" title='2D Chroma Vector Store Visualization',\n",
" scene=dict(xaxis_title='x',yaxis_title='y'),\n",
" width=800,\n",
" height=600,\n",
" margin=dict(r=20, b=10, l=10, t=40)\n",
" )\n",
"\n",
" fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2c250166-cb5b-4a75-8981-fae2d6dfe509",
"metadata": {},
"outputs": [],
"source": [
"show_embeddings_2d(result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b290e38-0800-4453-b664-7a7622ff5ed2",
"metadata": {},
"outputs": [],
"source": [
"def show_embeddings_3d(result):\n",
" vectors = np.array(result['embeddings']) \n",
" documents = result['documents']\n",
" metadatas = result['metadatas']\n",
" filenames = [metadata['filename'] for metadata in metadatas]\n",
" filenames_unique = sorted(set(filenames))\n",
"\n",
" # color assignment\n",
" color_map = {name: random_color() for name in filenames_unique}\n",
" colors = [color_map[name] for name in filenames]\n",
"\n",
" tsne = TSNE(n_components=3, random_state=42)\n",
" reduced_vectors = tsne.fit_transform(vectors)\n",
"\n",
" fig = go.Figure(data=[go.Scatter3d(\n",
" x=reduced_vectors[:, 0],\n",
" y=reduced_vectors[:, 1],\n",
" z=reduced_vectors[:, 2],\n",
" mode='markers',\n",
" marker=dict(size=5, color=colors, opacity=0.8),\n",
" text=[f\"Type: {t}<br>Text: {d[:100]}...\" for t, d in zip(filenames, documents)],\n",
" hoverinfo='text'\n",
" )])\n",
"\n",
" fig.update_layout(\n",
" title='3D Chroma Vector Store Visualization',\n",
" scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z'),\n",
" width=900,\n",
" height=700,\n",
" margin=dict(r=20, b=10, l=10, t=40)\n",
" )\n",
"\n",
" fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "45d1d034-2503-4176-b1e4-f248e31c4770",
"metadata": {},
"outputs": [],
"source": [
"show_embeddings_3d(result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e79946a1-f93a-4b3a-8d19-deef40dec223",
"metadata": {},
"outputs": [],
"source": [
"# create a new Chat with OpenAI\n",
"llm = ChatOpenAI(temperature=0.7, model_name=MODEL)\n",
"\n",
"# set up the conversation memory for the chat\n",
"memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
"\n",
"# the retriever is an abstraction over the VectorStore that will be used during RAG\n",
"retriever = vectorstore.as_retriever(search_kwargs={\"k\": 50})\n",
"\n",
"# putting it together: set up the conversation chain with the GPT 3.5 LLM, the vector store and memory\n",
"conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59f90c85-c113-4482-8574-8a728ef25459",
"metadata": {},
"outputs": [],
"source": [
"def chat(question, history):\n",
" result = conversation_chain.invoke({\"question\": question})\n",
" return result[\"answer\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0520a8ff-01a4-4fa6-9dc8-57da87272edc",
"metadata": {},
"outputs": [],
"source": [
"view = gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b4949b17-cd9c-4bff-bd5b-0f80df72e7dc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|