Spaces:
Sleeping
Sleeping
File size: 13,314 Bytes
5fdb69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
{
"cells": [
{
"cell_type": "markdown",
"id": "dfe37963-1af6-44fc-a841-8e462443f5e6",
"metadata": {},
"source": [
"## This notebook compares the embeddings generated by OpenAIEmbeddings.\n",
"\n",
"It shows that OpenAIEmbeddings embeddings can differ slightly (typically at 4 the decimal place).\n",
"\n",
"### Results from OpenAIEmbeddings:\n",
"encodings are NOT identical on each run.\n",
"\n",
"### Repeating with sentence-transformers/all-MiniLM-L6-v2:\n",
"encodings ARE identical on each run.\n",
"\n",
"Tests verify simple numerical comparisons.\n",
"\n",
"### Advanced Comparison\n",
"A more advanced euclidean and cosine comparison is also included.\n",
"\n",
"## NOTES: Tests run on local Jupiter Notebook| Anaconda setup for the course."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba2779af-84ef-4227-9e9e-6eaf0df87e77",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import glob\n",
"from dotenv import load_dotenv\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "802137aa-8a74-45e0-a487-d1974927d7ca",
"metadata": {},
"outputs": [],
"source": [
"# imports for langchain\n",
"\n",
"from langchain.document_loaders import DirectoryLoader, TextLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.schema import Document\n",
"from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
"from langchain_chroma import Chroma\n",
"import numpy as np\n",
"from sklearn.manifold import TSNE\n",
"import plotly.graph_objects as go\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58c85082-e417-4708-9efe-81a5d55d1424",
"metadata": {},
"outputs": [],
"source": [
"# price is a factor for our company, so we're going to use a low cost model\n",
"\n",
"MODEL = \"gpt-4o-mini\"\n",
"db_name = \"vector_db\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee78efcb-60fe-449e-a944-40bab26261af",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv()\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "730711a9-6ffe-4eee-8f48-d6cfb7314905",
"metadata": {},
"outputs": [],
"source": [
"# Read in documents using LangChain's loaders\n",
"# Take everything in all the sub-folders of our knowledgebase\n",
"\n",
"folders = glob.glob(\"knowledge-base/*\")\n",
"\n",
"# With thanks to CG and Jon R, students on the course, for this fix needed for some users \n",
"text_loader_kwargs = {'encoding': 'utf-8'}\n",
"# If that doesn't work, some Windows users might need to uncomment the next line instead\n",
"# text_loader_kwargs={'autodetect_encoding': True}\n",
"\n",
"documents = []\n",
"for folder in folders:\n",
" doc_type = os.path.basename(folder)\n",
" loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)\n",
" folder_docs = loader.load()\n",
" for doc in folder_docs:\n",
" doc.metadata[\"doc_type\"] = doc_type\n",
" documents.append(doc)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7310c9c8-03c1-4efc-a104-5e89aec6db1a",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"chunks = text_splitter.split_documents(documents)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd06e02f-6d9b-44cc-a43d-e1faa8acc7bb",
"metadata": {},
"outputs": [],
"source": [
"len(chunks)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2c54b4b6-06da-463d-bee7-4dd456c2b887",
"metadata": {},
"outputs": [],
"source": [
"doc_types = set(chunk.metadata['doc_type'] for chunk in chunks)\n",
"print(f\"Document types found: {', '.join(doc_types)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a8b5ef27-70c2-4111-bce7-854bc1ebd02a",
"metadata": {},
"outputs": [],
"source": [
"# Use a where filter to specify the metadata condition\n",
"# Get the 3 company vectors (corresponds to our 3 yellow dots)\n",
"\n",
"def get_company_vectors(collection):\n",
" company_vectors = collection.get(\n",
" where={\"doc_type\": \"company\"}, # Filter for documents where source = \"XXXX\"\n",
" limit=10,\n",
" include=[\"embeddings\", \"metadatas\", \"documents\"]\n",
" )\n",
" print(f\"Found {len(company_vectors)} company vectors\")\n",
" return company_vectors\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d688b873-b52b-4d80-9df2-f70b389f5dc7",
"metadata": {},
"outputs": [],
"source": [
"\n",
"def print_vectors_summary(vectors):\n",
" for i in range(len(vectors[\"documents\"])):\n",
" print(f\"\\n--- Chunk {i+1} ---\")\n",
" \n",
" # Print document content (first 100 chars)\n",
" print(f\"Content: {vectors['documents'][i][:100]}...\")\n",
" \n",
" # Print metadata\n",
" print(f\"Metadata: {vectors['metadatas'][i]}\")\n",
" \n",
" # Print embedding info (not the full vector as it would be too long)\n",
" embedding = vectors[\"embeddings\"][i]\n",
" print(f\"Embedding: Vector of length {len(embedding)}, first 5 values: {embedding[:5]}\")\n",
"\n",
"\n",
"def get_dimensions_for_vectors(vectors):\n",
" dimensions = []\n",
"\n",
" for i in range(len(vectors[\"documents\"])):\n",
" embedding = vectors[\"embeddings\"][i]\n",
" dimensions.append(embedding)\n",
"\n",
" return dimensions\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0b195184-4920-404a-9bfa-0231f1dbe276",
"metadata": {},
"outputs": [],
"source": [
"# Quick check if any single value is different\n",
"def quick_diff_check(emb1, emb2):\n",
" result = \"Embeddings are identical\"\n",
" print(\"\\n\\nComparing two embeddings:\\n\\n\")\n",
" print(emb1)\n",
" print(emb2)\n",
" for i, (v1, v2) in enumerate(zip(emb1, emb2)):\n",
" if v1 != v2:\n",
" result = f\"Different at dimension {i}: {v1} vs {v2}\"\n",
" break\n",
" print(result)\n",
" return result\n",
"\n",
"#quick_diff_check(dimensions[0], dimensions[1])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "06ba838d-d179-4e2d-b208-dd9cc1fd0097",
"metadata": {},
"outputs": [],
"source": [
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"def create_vectorstores(embeddings):\n",
"\n",
" if os.path.exists(\"vectorstore1\"):\n",
" Chroma(persist_directory=\"vectorstore1\", embedding_function=embeddings).delete_collection()\n",
" if os.path.exists(\"vectorstore2\"):\n",
" Chroma(persist_directory=\"vectorstore2\", embedding_function=embeddings).delete_collection()\n",
" \n",
" \n",
" # Create vectorstore 1\n",
" vectorstore1 = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=\"vectorstore1\")\n",
" print(f\"Vectorstore 1 created with {vectorstore1._collection.count()} documents\")\n",
" \n",
" # Create vectorstore 2\n",
" vectorstore2 = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=\"vectorstore2\")\n",
" print(f\"Vectorstore 2 created with {vectorstore2._collection.count()} documents\")\n",
"\n",
" return vectorstore1, vectorstore2\n",
"\n",
"vectorstore1, vectorstore2 = create_vectorstores(embeddings)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e24242eb-613a-4edb-a081-6b8937f106a7",
"metadata": {},
"outputs": [],
"source": [
"## Uncomment this and rerun cells below, \n",
"## to see that HuggingFaceEmbeddings is idential\n",
"\n",
"#from langchain.embeddings import HuggingFaceEmbeddings\n",
"#embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")\n",
"#vectorstore1, vectorstore2 = create_vectorstores(embeddings)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "000b9e70-2958-40db-bbed-56a00e4249ce",
"metadata": {},
"outputs": [],
"source": [
"# Get the 3 company doc_type vectors\n",
"collection1 = vectorstore1._collection\n",
"collection2 = vectorstore2._collection\n",
"\n",
"company_vectors1=get_company_vectors(collection1)\n",
"company_vectors2=get_company_vectors(collection2)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63cd63e4-9d3e-405a-8ef9-dac16fe2570e",
"metadata": {},
"outputs": [],
"source": [
"# Lets print out summary info just to see we have the same chunks.\n",
"\n",
"def print_summary_info (vectors):\n",
" print(\"VECTORS SUMMARY\\n\")\n",
" print_vectors_summary(vectors)\n",
"\n",
"\n",
"print(\"\\n\\n\\n========= VECTORS 1 =========\\n\\n\")\n",
"print_summary_info(company_vectors1)\n",
"\n",
"print(\"\\n\\n\\n========= VECTORS 2 =========\\n\\n\")\n",
"print_summary_info(company_vectors2)\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc085a35-f0ec-4ddb-955c-244cb2d3eb2a",
"metadata": {},
"outputs": [],
"source": [
"dimensions1 = get_dimensions_for_vectors(company_vectors1)\n",
"dimensions2 = get_dimensions_for_vectors(company_vectors2)\n",
"\n",
"result1 = quick_diff_check(dimensions1[0], dimensions2[0]) \n",
"result2 = quick_diff_check(dimensions1[1], dimensions2[1]) \n",
"result3 = quick_diff_check(dimensions1[2], dimensions2[2]) \n",
"\n",
"print(\"\\n\\nSUMMARY RESULTS:\")\n",
"print(\"================\\n\\n\")\n",
"print(result1) \n",
"print(result2)\n",
"print(result3)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "164cf94d-9d63-4bae-91f9-4b02da1537ae",
"metadata": {},
"outputs": [],
"source": [
"## ADVANCED COMPARISONS:\n",
"# More advanced comparisons (from Claude 3.7 Sonnet):\n",
"\n",
"\n",
"## !IMPORTANT *** Uncomment final line to execute ***\n",
"\n",
"\n",
"import numpy as np\n",
"from scipy.spatial.distance import cosine\n",
"\n",
"# Method 1: Euclidean distance (L2 norm)\n",
"def compare_embeddings_euclidean(emb1, emb2):\n",
" emb1_array = np.array(emb1)\n",
" emb2_array = np.array(emb2)\n",
" distance = np.linalg.norm(emb1_array - emb2_array)\n",
" return {\n",
" \"different\": distance > 0,\n",
" \"distance\": distance,\n",
" \"similarity\": 1/(1+distance) # Converts distance to similarity score\n",
" }\n",
"\n",
"# Method 2: Cosine similarity (common for embeddings)\n",
"def compare_embeddings_cosine(emb1, emb2):\n",
" emb1_array = np.array(emb1)\n",
" emb2_array = np.array(emb2)\n",
" similarity = 1 - cosine(emb1_array, emb2_array) # Cosine returns distance, so subtract from 1\n",
" return {\n",
" \"different\": similarity < 0.9999, # Almost identical if > 0.9999\n",
" \"similarity\": similarity\n",
" }\n",
"\n",
"# Method 3: Simple exact equality check\n",
"def are_embeddings_identical(emb1, emb2):\n",
" return np.array_equal(np.array(emb1), np.array(emb2))\n",
"\n",
"\n",
"def run_advanced_comparisons():\n",
" for i in range(0, 3):\n",
" print(f\"\\n\\nComparing vector dimensions for dimension[{i}]....\\n\")\n",
" print(\"Exactly identical? ---> \", are_embeddings_identical(dimensions1[i], dimensions2[i]))\n",
" print(\"Cosine comparison: ---> \", compare_embeddings_cosine(dimensions1[i], dimensions2[i]))\n",
" print(\"Euclidean comparison: ---> \", compare_embeddings_euclidean(dimensions1[i], dimensions2[i]))\n",
"\n",
"\n",
"#run_advanced_comparisons()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|