Spaces:
Running
Running
Commit
·
e4b6ad9
1
Parent(s):
8f92826
page 1 name
Browse files- app.py +86 -0
- packages.txt +2 -0
- r.png +0 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import cv2 as cv
|
3 |
+
import numpy as np
|
4 |
+
import streamlit as st
|
5 |
+
from PIL import Image
|
6 |
+
import pytesseract
|
7 |
+
|
8 |
+
|
9 |
+
act = [(150,240), (610,260)]
|
10 |
+
|
11 |
+
|
12 |
+
def align_images(ref_gray, input_gray):
|
13 |
+
"""
|
14 |
+
Aligns the input image to the reference image using homography.
|
15 |
+
|
16 |
+
Parameters:
|
17 |
+
reference_image (numpy.ndarray): The reference image.
|
18 |
+
input_image (numpy.ndarray): The input image to be aligned.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
numpy.ndarray: The aligned version of the input image.
|
22 |
+
"""
|
23 |
+
# # Convert images to grayscale
|
24 |
+
# ref_gray = cv2.cvtColor(reference_image, cv2.COLOR_BGR2GRAY)
|
25 |
+
# input_gray = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)
|
26 |
+
|
27 |
+
|
28 |
+
# Detect ORB keypoints and descriptors
|
29 |
+
orb = cv2.ORB_create(nfeatures=500)
|
30 |
+
keypoints1, descriptors1 = orb.detectAndCompute(ref_gray, None)
|
31 |
+
keypoints2, descriptors2 = orb.detectAndCompute(input_gray, None)
|
32 |
+
|
33 |
+
# Match descriptors using BFMatcher
|
34 |
+
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
35 |
+
matches = bf.match(descriptors1, descriptors2)
|
36 |
+
matches = sorted(matches, key=lambda x: x.distance)
|
37 |
+
|
38 |
+
# Extract location of good matches
|
39 |
+
ref_points = np.float32([keypoints1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
|
40 |
+
input_points = np.float32([keypoints2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)
|
41 |
+
|
42 |
+
# Compute homography matrix
|
43 |
+
H, mask = cv2.findHomography(input_points, ref_points, cv2.RANSAC, 5.0)
|
44 |
+
|
45 |
+
# Warp input image to align with reference image
|
46 |
+
height, width = ref_gray.shape
|
47 |
+
aligned_image = cv2.warpPerspective(input_gray, H, (width, height))
|
48 |
+
|
49 |
+
return aligned_image
|
50 |
+
|
51 |
+
def ocr_with_crop(aligned_image):
|
52 |
+
# Open the image
|
53 |
+
# img = Image.open(image_path)
|
54 |
+
# img = cv2.imread(image_path,0)
|
55 |
+
# img = enhance(img)
|
56 |
+
# st.image(img)
|
57 |
+
# st.write(type(img))
|
58 |
+
# enh = enhance(np.array(img))
|
59 |
+
# st.image(enh)
|
60 |
+
# Define the coordinates for cropping
|
61 |
+
crop_coordinates = act
|
62 |
+
|
63 |
+
# Convert to rectangular bounds (x1, y1, x2, y2)
|
64 |
+
x1, y1 = crop_coordinates[0]
|
65 |
+
x2, y2 = crop_coordinates[1]
|
66 |
+
# Crop the image using the defined coordinates
|
67 |
+
# cropped_img = img.crop((x1, y1, x2, y2))
|
68 |
+
cropped_img = aligned_image[y1:y2,x1:x2]
|
69 |
+
st.image(cropped_img)
|
70 |
+
# Perform OCR on the cropped image
|
71 |
+
text = pytesseract.image_to_string(cropped_img)
|
72 |
+
|
73 |
+
# Print the extracted text
|
74 |
+
st.write(text)
|
75 |
+
|
76 |
+
if __name__== "__main__":
|
77 |
+
ref = cv.imread("r.png",0)
|
78 |
+
if inp:= st.file_uploader("upload your form in image format", type=['png', 'jpg']):
|
79 |
+
image = Image.open(inp)
|
80 |
+
gray_image_pil = image.convert('L')
|
81 |
+
image_array = np.array(gray_image_pil)
|
82 |
+
st.image(image_array)
|
83 |
+
align_image = align_images(ref,image_array)
|
84 |
+
ocr_with_crop(align_image)
|
85 |
+
|
86 |
+
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
tesseract-ocr
|
2 |
+
pytesseract
|
r.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pillow
|
3 |
+
matplotlib
|
4 |
+
numpy
|
5 |
+
opencv-python
|
6 |
+
pymupdf
|
7 |
+
pillow
|
8 |
+
PyPDF2
|
9 |
+
pdf2image
|
10 |
+
pytesseract
|