Spaces:
Sleeping
Sleeping
Commit
·
873bd97
1
Parent(s):
1867a74
Fix SARIMA and LSTM deployment issues
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
import tensorflow as tf
|
6 |
import joblib
|
7 |
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
|
|
8 |
|
9 |
# Load the dataset
|
10 |
webtraffic_data = pd.read_csv("webtraffic.csv")
|
@@ -24,8 +25,6 @@ sarima_model = joblib.load("sarima_model.pkl") # SARIMA model
|
|
24 |
lstm_model = tf.keras.models.load_model("lstm_model.keras") # LSTM model
|
25 |
|
26 |
# Initialize scalers and scale the data for LSTM
|
27 |
-
from sklearn.preprocessing import MinMaxScaler
|
28 |
-
|
29 |
scaler_X = MinMaxScaler(feature_range=(0, 1))
|
30 |
scaler_y = MinMaxScaler(feature_range=(0, 1))
|
31 |
|
@@ -37,8 +36,8 @@ y_train_scaled = scaler_y.fit_transform(train_data['Sessions'].values.reshape(-1
|
|
37 |
X_test_scaled = scaler_X.transform(test_data['Sessions'].values.reshape(-1, 1))
|
38 |
y_test_scaled = scaler_y.transform(test_data['Sessions'].values.reshape(-1, 1))
|
39 |
|
40 |
-
# Reshape test data for LSTM
|
41 |
-
X_test_lstm = X_test_scaled.reshape((X_test_scaled.shape[0], 1,
|
42 |
|
43 |
# Generate predictions for SARIMA
|
44 |
sarima_predictions = sarima_model.predict(start=len(train_data), end=len(webtraffic_data) - 1)
|
|
|
5 |
import tensorflow as tf
|
6 |
import joblib
|
7 |
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
8 |
+
from sklearn.preprocessing import MinMaxScaler
|
9 |
|
10 |
# Load the dataset
|
11 |
webtraffic_data = pd.read_csv("webtraffic.csv")
|
|
|
25 |
lstm_model = tf.keras.models.load_model("lstm_model.keras") # LSTM model
|
26 |
|
27 |
# Initialize scalers and scale the data for LSTM
|
|
|
|
|
28 |
scaler_X = MinMaxScaler(feature_range=(0, 1))
|
29 |
scaler_y = MinMaxScaler(feature_range=(0, 1))
|
30 |
|
|
|
36 |
X_test_scaled = scaler_X.transform(test_data['Sessions'].values.reshape(-1, 1))
|
37 |
y_test_scaled = scaler_y.transform(test_data['Sessions'].values.reshape(-1, 1))
|
38 |
|
39 |
+
# Reshape test data for LSTM (samples, time_steps, features)
|
40 |
+
X_test_lstm = X_test_scaled.reshape((X_test_scaled.shape[0], 1, 1))
|
41 |
|
42 |
# Generate predictions for SARIMA
|
43 |
sarima_predictions = sarima_model.predict(start=len(train_data), end=len(webtraffic_data) - 1)
|