manjunathainti commited on
Commit
873bd97
·
1 Parent(s): 1867a74

Fix SARIMA and LSTM deployment issues

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -5,6 +5,7 @@ import numpy as np
5
  import tensorflow as tf
6
  import joblib
7
  from sklearn.metrics import mean_absolute_error, mean_squared_error
 
8
 
9
  # Load the dataset
10
  webtraffic_data = pd.read_csv("webtraffic.csv")
@@ -24,8 +25,6 @@ sarima_model = joblib.load("sarima_model.pkl") # SARIMA model
24
  lstm_model = tf.keras.models.load_model("lstm_model.keras") # LSTM model
25
 
26
  # Initialize scalers and scale the data for LSTM
27
- from sklearn.preprocessing import MinMaxScaler
28
-
29
  scaler_X = MinMaxScaler(feature_range=(0, 1))
30
  scaler_y = MinMaxScaler(feature_range=(0, 1))
31
 
@@ -37,8 +36,8 @@ y_train_scaled = scaler_y.fit_transform(train_data['Sessions'].values.reshape(-1
37
  X_test_scaled = scaler_X.transform(test_data['Sessions'].values.reshape(-1, 1))
38
  y_test_scaled = scaler_y.transform(test_data['Sessions'].values.reshape(-1, 1))
39
 
40
- # Reshape test data for LSTM
41
- X_test_lstm = X_test_scaled.reshape((X_test_scaled.shape[0], 1, X_test_scaled.shape[1]))
42
 
43
  # Generate predictions for SARIMA
44
  sarima_predictions = sarima_model.predict(start=len(train_data), end=len(webtraffic_data) - 1)
 
5
  import tensorflow as tf
6
  import joblib
7
  from sklearn.metrics import mean_absolute_error, mean_squared_error
8
+ from sklearn.preprocessing import MinMaxScaler
9
 
10
  # Load the dataset
11
  webtraffic_data = pd.read_csv("webtraffic.csv")
 
25
  lstm_model = tf.keras.models.load_model("lstm_model.keras") # LSTM model
26
 
27
  # Initialize scalers and scale the data for LSTM
 
 
28
  scaler_X = MinMaxScaler(feature_range=(0, 1))
29
  scaler_y = MinMaxScaler(feature_range=(0, 1))
30
 
 
36
  X_test_scaled = scaler_X.transform(test_data['Sessions'].values.reshape(-1, 1))
37
  y_test_scaled = scaler_y.transform(test_data['Sessions'].values.reshape(-1, 1))
38
 
39
+ # Reshape test data for LSTM (samples, time_steps, features)
40
+ X_test_lstm = X_test_scaled.reshape((X_test_scaled.shape[0], 1, 1))
41
 
42
  # Generate predictions for SARIMA
43
  sarima_predictions = sarima_model.predict(start=len(train_data), end=len(webtraffic_data) - 1)