File size: 9,980 Bytes
42ae52a
 
 
 
 
 
 
daf9c75
 
 
42ae52a
 
 
 
 
daf9c75
42ae52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daf9c75
42ae52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daf9c75
42ae52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daf9c75
42ae52a
 
 
 
 
 
 
 
 
 
daf9c75
42ae52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daf9c75
42ae52a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import json
from typing import List

import spaces
import gradio as gr
from huggingface_hub import ModelCard

from modules.helpers.common_helpers import ControlNetReq, BaseReq, BaseImg2ImgReq, BaseInpaintReq
from modules.helpers.flux_helpers import gen_img
from config import flux_loras

loras = flux_loras


# Event functions
def update_fast_generation(fast_generation):
    if fast_generation:
        return (
            gr.update(
                value=3.5
            ),
            gr.update(
                value=8
            )
        )


def selected_lora_from_gallery(evt: gr.SelectData):
    return (
        gr.update(
            value=evt.index
        )
    )


def update_selected_lora(custom_lora):
    link = custom_lora.split("/")
    
    if len(link) == 2:
        model_card = ModelCard.load(custom_lora)
        trigger_word = model_card.data.get("instance_prompt", "")
        image_url = f"""https://huggingface.co/{custom_lora}/resolve/main/{model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)}"""
        
        custom_lora_info_css = """
        <style>
            .custom-lora-info {
                font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif;
                background: linear-gradient(135deg, #4a90e2, #7b61ff);
                color: white;
                padding: 16px;
                border-radius: 8px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                margin: 16px 0;
            }
            .custom-lora-header {
                font-size: 18px;
                font-weight: 600;
                margin-bottom: 12px;
            }
            .custom-lora-content {
                display: flex;
                align-items: center;
                background-color: rgba(255, 255, 255, 0.1);
                border-radius: 6px;
                padding: 12px;
            }
            .custom-lora-image {
                width: 80px;
                height: 80px;
                object-fit: cover;
                border-radius: 6px;
                margin-right: 16px;
            }
            .custom-lora-text h3 {
                margin: 0 0 8px 0;
                font-size: 16px;
                font-weight: 600;
            }
            .custom-lora-text small {
                font-size: 14px;
                opacity: 0.9;
            }
            .custom-trigger-word {
                background-color: rgba(255, 255, 255, 0.2);
                padding: 2px 6px;
                border-radius: 4px;
                font-weight: 600;
            }
        </style>
        """

        custom_lora_info_html = f"""
        <div class="custom-lora-info">
            <div class="custom-lora-header">Custom LoRA: {custom_lora}</div>
            <div class="custom-lora-content">
                <img class="custom-lora-image" src="{image_url}" alt="LoRA preview">
                <div class="custom-lora-text">
                    <h3>{link[1].replace("-", " ").replace("_", " ")}</h3>
                    <small>{"Using: <span class='custom-trigger-word'>"+trigger_word+"</span> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}</small>
                </div>
            </div>
        </div>
        """

        custom_lora_info_html = f"{custom_lora_info_css}{custom_lora_info_html}"

        return (
            gr.update( # selected_lora
                value=custom_lora,
            ),
            gr.update( # custom_lora_info
                value=custom_lora_info_html,
                visible=True
            )
        )

    else:
        return (
            gr.update( # selected_lora
                value=custom_lora,
            ),
            gr.update( # custom_lora_info
                value=custom_lora_info_html if len(link) == 0 else "",
                visible=False
            )
        )


def add_to_enabled_loras(selected_lora, enabled_loras):
    lora_data = loras
    try:
        selected_lora = int(selected_lora)
        
        if 0 <= selected_lora: # is the index of the lora in the gallery
            lora_info = lora_data[selected_lora]
            enabled_loras.append({
                "repo_id": lora_info["repo"],
                "trigger_word": lora_info["trigger_word"]
            })
    except ValueError:
        link = selected_lora.split("/")
        if len(link) == 2:
            model_card = ModelCard.load(selected_lora)
            trigger_word = model_card.data.get("instance_prompt", "")
            enabled_loras.append({
                "repo_id": selected_lora,
                "trigger_word": trigger_word
            })
    
    return (
        gr.update( # selected_lora
            value=""
        ),
        gr.update( # custom_lora_info
            value="",
            visible=False
        ),
        gr.update( # enabled_loras
            value=enabled_loras
        )
    )


def update_lora_sliders(enabled_loras):
    sliders = []
    remove_buttons = []
    
    for lora in enabled_loras:
        sliders.append(
            gr.update(
                label=lora.get("repo_id", ""),
                info=f"Trigger Word: {lora.get('trigger_word', '')}",
                visible=True,
                interactive=True
            )
        )
        remove_buttons.append(
            gr.update(
                visible=True,
                interactive=True
            )
        )
    
    if len(sliders) < 6:
        for i in range(len(sliders), 6):
            sliders.append(
                gr.update(
                    visible=False
                )
            )
            remove_buttons.append(
                gr.update(
                    visible=False
                )
            )
    
    return *sliders, *remove_buttons


def remove_from_enabled_loras(enabled_loras, index):
    enabled_loras.pop(index)
    return (
        gr.update(
            value=enabled_loras
        )
    )


@spaces.GPU
def generate_image(
        model, prompt, fast_generation, enabled_loras,
        lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5,
        img2img_image, inpaint_image, canny_image, pose_image, depth_image,
        img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength,
        resize_mode,
        scheduler, image_height, image_width, image_num_images_per_prompt,
        image_num_inference_steps, image_guidance_scale, image_seed,
        refiner, vae
    ):
        base_args = {
            "model": model,
            "prompt": prompt,
            "fast_generation": fast_generation,
            "loras": None,
            "resize_mode": resize_mode,
            "scheduler": scheduler,
            "height": int(image_height),
            "width": int(image_width),
            "num_images_per_prompt": float(image_num_images_per_prompt),
            "num_inference_steps": float(image_num_inference_steps),
            "guidance_scale": float(image_guidance_scale),
            "seed": int(image_seed),
            "refiner": refiner,
            "vae": vae,
            "controlnet_config": None,
        }
        base_args = BaseReq(**base_args)
        
        if len(enabled_loras) > 0:
            base_args.loras = []
            for enabled_lora, slider in zip(enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5]):
                if enabled_lora['repo_id']:
                    base_args.loras.append({
                        "repo_id": enabled_lora['repo_id'],
                        "weight": slider
                    })
        
        image = None
        mask_image = None
        strength = None
        
        if img2img_image:
            image = img2img_image
            strength = float(img2img_strength)
            
            base_args = BaseImg2ImgReq(
                **base_args.__dict__,
                image=image,
                strength=strength
            )
        elif inpaint_image:
            image = inpaint_image['background'] if not all(pixel == (0, 0, 0) for pixel in list(inpaint_image['background'].getdata())) else None
            mask_image = inpaint_image['layers'][0] if image else None
            strength = float(inpaint_strength)
            
            if image and mask_image:
                base_args = BaseInpaintReq(
                    **base_args.__dict__,
                    image=image,
                    mask_image=mask_image,
                    strength=strength
                )
        elif any([canny_image, pose_image, depth_image]):
            base_args.controlnet_config = ControlNetReq(
                controlnets=[],
                control_images=[],
                controlnet_conditioning_scale=[]
            )
            
            if canny_image:
                base_args.controlnet_config.controlnets.append("canny")
                base_args.controlnet_config.control_images.append(canny_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength))
            if pose_image:
                base_args.controlnet_config.controlnets.append("pose")
                base_args.controlnet_config.control_images.append(pose_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength))
            if depth_image:
                base_args.controlnet_config.controlnets.append("depth")
                base_args.controlnet_config.control_images.append(depth_image)
                base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength))
        else:
            base_args = BaseReq(**base_args.__dict__)
        
        return gr.update(
            value=gen_img(base_args),
            interactive=True
        )