File size: 12,735 Bytes
37112ef
 
 
 
 
9bba636
37112ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa9efa
37112ef
 
 
 
 
12289cb
37112ef
 
a7c9e18
37112ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6854514
 
 
 
 
 
 
37112ef
 
 
 
a5df595
37112ef
 
 
 
 
 
 
 
20c6eca
 
37112ef
 
 
a5df595
6854514
 
bf49323
6854514
9b41963
37112ef
a5df595
37112ef
 
 
 
 
 
 
 
 
bf49323
37112ef
 
 
 
 
 
 
 
9b41963
37112ef
 
 
 
 
 
 
 
 
 
 
 
 
20c6eca
84df228
37112ef
 
 
 
 
 
20c6eca
 
37112ef
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import gc
import random

import gradio as gr
import torch
from controlnet_aux.processor import Processor
from safetensors.torch import load_file
from diffusers import (
    AutoPipelineForText2Image,
    AutoPipelineForImage2Image,
    AutoPipelineForInpainting,
    FluxPipeline,
    FluxImg2ImgPipeline,
    FluxInpaintPipeline,
    FluxControlNetPipeline,
    StableDiffusionXLPipeline,
    StableDiffusionXLImg2ImgPipeline,
    StableDiffusionXLInpaintPipeline,
    StableDiffusionXLControlNetPipeline,
    StableDiffusionXLControlNetImg2ImgPipeline,
    StableDiffusionXLControlNetInpaintPipeline,
)
from sd_embed.embedding_funcs import get_weighted_text_embeddings_flux1, get_weighted_text_embeddings_sdxl
from huggingface_hub import hf_hub_download
from diffusers.schedulers import *

from .models import *
from .load_models import device, models, flux_vae, sdxl_vae, refiner, controlnets

sd_pipes = (StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline,
            StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, StableDiffusionXLControlNetInpaintPipeline)
flux_pipes = (FluxPipeline, FluxImg2ImgPipeline, FluxInpaintPipeline, FluxControlNetPipeline)


def get_pipe(request: BaseReq | BaseImg2ImgReq | BaseInpaintReq):
    for model in models:
        if model['repo_id'] == request.model:
            pipe_args = {
                "pipeline": model['pipeline'],
            }
            
            # Set ControlNet config
            if request.controlnet_config:
                pipe_args["controlnet"] = []
                if model['loader'] == 'sdxl' or model['loader'] == 'flux':
                    for controlnet in controlnets:
                        if request.controlnet_config.controlnet in controlnet['layers']:
                            pipe_args["controlnet"].append(controlnet['controlnet'])
                elif model['loader'] == 'flux-multi':
                    controlnet = next((controlnet for controlnet in controlnets if controlnet['loader'] == 'flux-multi'), None)
                    if controlnet is not None:
                        # control_mode = list of index of layers
                        pipe_args['control_mode'] = [controlnet['layers'].index(layer) for layer in request.controlnet_config.controlnet]
                        pipe_args['controlnet'].append(controlnet['controlnet'])
            
            # Choose Pipeline Mode
            if not request.custom_addons:
                if isinstance(request, BaseInpaintReq):
                    pipe_args['pipeline'] = AutoPipelineForInpainting.from_pipe(**pipe_args)
                elif isinstance(request, BaseImg2ImgReq):
                    pipe_args['pipeline'] = AutoPipelineForImage2Image.from_pipe(**pipe_args)
                elif isinstance(request, BaseReq):
                    pipe_args['pipeline'] = AutoPipelineForText2Image.from_pipe(**pipe_args)
            elif request.custom_addons:
                pipe_args['pipeline'] = None
            
            # Enable or Disable Vae
            if request.vae:
                pipe_args["pipeline"].vae = sdxl_vae if model['loader'] == 'sdxl' else flux_vae
            elif not request.vae:
                pipe_args["pipeline"].vae = None if model['loader'] == 'sdxl' else flux_vae
            
            # Set Scheduler
            pipe_args["pipeline"].scheduler = load_scheduler(pipe_args["pipeline"], request.scheduler)
            
            # Set Loras
            if request.loras:
                for i, lora in enumerate(request.loras):
                    pipe_args["pipeline"].load_lora_weights(lora['repo_id'], adapter_name=f"lora_{i}")
                adapter_names = [f"lora_{i}" for i in range(len(request.loras))]
                adapter_weights = [lora['weight'] for lora in request.loras]
                
                if request.fast_generation:
                    hyper_lora = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors") if model['loader'] == 'flux' \
                            else hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-8steps-lora.safetensors")
                    hyper_weight = 0.125 if model['loader'] == 'flux' else 1.0
                    pipe_args["pipeline"].load_lora_weights(hyper_lora, adapter_name="hyper_lora")
                    pipe_args["pipeline"].set_adapters(["hyper_lora"], [hyper_weight])
                    
                pipe_args["pipeline"].set_adapters(adapter_names, adapter_weights)

            # Set Embeddings
            if request.embeddings and model['loader'] == 'sdxl':
                for embedding in request.embeddings:
                    state_dict = load_file(hf_hub_download(embedding['repo_id']))
                    pipe_args["pipeline"].load_textual_inversion(state_dict['clip_g'], token=embedding['token'], text_encoder=pipe_args["pipeline"].text_encoder_2, tokenizer=pipe_args["pipeline"].tokenizer_2)
                    pipe_args["pipeline"].load_textual_inversion(state_dict["clip_l"], token=embedding['token'], text_encoder=pipe_args["pipeline"].text_encoder, tokenizer=pipe_args["pipeline"].tokenizer)

            return pipe_args

    
def load_scheduler(pipeline, scheduler):
    schedulers = {
        "dpmpp_2m": (DPMSolverMultistepScheduler, {}),
        "dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
        "dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++"}),
        "dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "use_karras_sigmas": True}),
        "dpmpp_sde": (DPMSolverSinglestepScheduler, {}),
        "dpmpp_sde_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
        "dpm2": (KDPM2DiscreteScheduler, {}),
        "dpm2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
        "dpm2_a": (KDPM2AncestralDiscreteScheduler, {}),
        "dpm2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
        "euler": (EulerDiscreteScheduler, {}),
        "euler_a": (EulerAncestralDiscreteScheduler, {}),
        "heun": (HeunDiscreteScheduler, {}),
        "lms": (LMSDiscreteScheduler, {}),
        "lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
        "deis": (DEISMultistepScheduler, {}),
        "unipc": (UniPCMultistepScheduler, {}),
        "fm_euler": (FlowMatchEulerDiscreteScheduler, {}),
    }
    scheduler_class, kwargs = schedulers.get(scheduler, (None, {}))
    
    if scheduler_class is not None:
        scheduler = scheduler_class.from_config(pipeline.scheduler.config, **kwargs)
    else:
        raise ValueError(f"Unknown scheduler: {scheduler}")
    
    return scheduler


def resize_images(images: List[Image.Image], height: int, width: int, resize_mode: str):
    for image in images:
        if resize_mode == "resize_only":
            image = image.resize((width, height))
        elif resize_mode == "crop_and_resize":
            image = image.crop((0, 0, width, height))
        elif resize_mode == "resize_and_fill":
            image = image.resize((width, height), Image.Resampling.LANCZOS)

    return images


def get_controlnet_images(controlnets: List[str], control_images: List[Image.Image], height: int, width: int, resize_mode: str):
    response_images = []
    control_images = resize_images(control_images, height, width, resize_mode)
    for controlnet, image in zip(controlnets, control_images):
        if controlnet == "canny":
            processor = Processor('canny')
        elif controlnet == "depth":
            processor = Processor('depth_midas')
        elif controlnet == "pose":
            processor = Processor('openpose_full')
        elif controlnet == "scribble":
            processor = Processor('scribble')
        else:
            raise ValueError(f"Invalid Controlnet: {controlnet}")
    
        response_images.append(processor(image, to_pil=True))
    
    return response_images


def get_control_mode(controlnet_config: ControlNetReq):
    control_mode = []
    for controlnet in controlnets:
        if controlnet['loader'] == 'flux-multi':
            layers = controlnet['layers']

    for c in controlnet_config.controlnets:
        if c in layers:
            control_mode.append(layers.index(c))

    return control_mode


# def check_image_safety(images: List[Image.Image]):
#     safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
#     has_nsfw_concepts = safety_checker(
#         images=[images],
#         clip_input=safety_checker_input.pixel_values.to("cuda"),
#     )
    
#     return has_nsfw_concepts[1]


# def get_prompt_attention(pipeline, prompt, negative_prompt):
#     if isinstance(pipeline, flux_pipes):
#         prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(pipeline, prompt, device=device)
#         return prompt_embeds, None, pooled_prompt_embeds, None
#     elif isinstance(pipeline, sd_pipes):
#         prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = get_weighted_text_embeddings_sdxl(pipeline, prompt, negative_prompt, device=device)
#         return prompt_embeds, prompt_neg_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds


def cleanup(pipeline, loras = None, embeddings = None):
    if loras:
        # pipeline.disable_lora()
        pipeline.unload_lora_weights()
    if embeddings:
        pipeline.unload_textual_inversion()
    gc.collect()
    torch.cuda.empty_cache()


# Gen Function
def gen_img(request: BaseReq | BaseImg2ImgReq | BaseInpaintReq, progress=gr.Progress(track_tqdm=True)):
    progress(0.1, "Loading Pipeline")
    pipeline_args = get_pipe(request)
    pipeline = pipeline_args["pipeline"]
    try:
        progress(0.3, "Getting Prompt Embeddings")
        # Get Prompt Embeddings
        if isinstance(pipeline, flux_pipes):
            positive_prompt_embeds, positive_prompt_pooled = get_weighted_text_embeddings_flux1(pipeline, request.prompt)
        elif isinstance(pipeline, sd_pipes):
            positive_prompt_embeds, negative_prompt_embeds, positive_prompt_pooled, negative_prompt_pooled = get_weighted_text_embeddings_sdxl(pipeline, request.prompt, request.negative_prompt)

        progress(0.5, "Configuring Pipeline")
        # Common Args
        args = {
            'prompt_embeds': positive_prompt_embeds,
            'pooled_prompt_embeds': positive_prompt_pooled,
            'height': request.height,
            'width': request.width,
            'num_images_per_prompt': request.num_images_per_prompt,
            'num_inference_steps': request.num_inference_steps,
            'guidance_scale': request.guidance_scale,
            'generator': [torch.Generator().manual_seed(request.seed + i) if not request.seed is any([None, 0, -1]) else torch.Generator().manual_seed(random.randint(0, 2**32 - 1)) for i in range(request.num_images_per_prompt)],
        }
        
        if isinstance(pipeline, sd_pipes):
            args['clip_skip'] = request.clip_skip
            args['negative_prompt_embeds'] = negative_prompt_embeds
            args['negative_pooled_prompt_embeds'] = negative_prompt_pooled

        if request.controlnet_config:
            args['control_image'] = get_controlnet_images(request.controlnet_config.controlnets, request.controlnet_config.control_images, request.height, request.width, request.resize_mode)
            args['controlnet_conditioning_scale'] = request.controlnet_config.controlnet_conditioning_scale
        
        if request.controlnet_config and isinstance(pipeline, flux_pipes):
            args['control_mode'] = get_control_mode(request.controlnet_config)

        if isinstance(request, (BaseImg2ImgReq, BaseInpaintReq)):
            args['image'] = resize_images([request.image], request.height, request.width, request.resize_mode)[0]
            args['strength'] = request.strength

        if isinstance(request, BaseInpaintReq):
            args['mask_image'] = resize_images([request.mask_image], request.height, request.width, request.resize_mode)[0]

        # Generate
        progress(0.9, "Generating Images")
        gr.Info(f"Request {type(request)}: {str(request.__dict__)}", duration=60)
        images = pipeline(**args).images

        # Refiner
        if request.refiner:
            images = refiner(image=images, prompt=request.prompt, num_inference_steps=40, denoising_start=0.7).images

        progress(1.0, "Cleaning Up")
        cleanup(pipeline, request.loras, request.embeddings)
        return images
    except Exception as e:
        cleanup(pipeline, request.loras, request.embeddings)
        raise gr.Error(f"Error: {e}")