Spaces:
Sleeping
Sleeping
File size: 14,752 Bytes
572abf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
from anticipation import ops
from anticipation.sample import generate
from anticipation.tokenize import extract_instruments
from anticipation.convert import events_to_midi,midi_to_events, compound_to_midi
from anticipation.config import *
from anticipation.vocab import *
from anticipation.convert import midi_to_compound
import mido
from agents.utils import load_midi_metadata
SMALL_MODEL = 'stanford-crfm/music-small-800k' # faster inference, worse sample quality
MEDIUM_MODEL = 'stanford-crfm/music-medium-800k' # slower inference, better sample quality
LARGE_MODEL = 'stanford-crfm/music-large-800k' # slowest inference, best sample quality
def harmonize_midi(model, midi, start_time, end_time,original_tempo,original_time_sig,top_p):
# Turn full midi to events
events = midi_to_events(midi)
print("Midi converted to events")
# Get clip from 0 to end of full midi
segment = ops.clip(events, 0, ops.max_time(events, seconds=True))
segment = ops.translate(segment, -ops.min_time(segment, seconds=False))
# Extract melody and accompaniment
events, melody = extract_instruments(segment, [0])
print("Melody extracted")
print("Start time:", start_time)
print("End time:", end_time)
# Get initial prompt
history = ops.clip(events, 0, start_time, clip_duration=False)
anticipated = [CONTROL_OFFSET + tok for tok in ops.clip(events, end_time, ops.max_time(segment, seconds=True), clip_duration=False)]
# Generate accompaniment conditioning on melody
accompaniment = generate(model, start_time, end_time, inputs=history, controls=melody, top_p=top_p, debug=False)
# Append anticipated continuation to accompaniment
accompaniment = ops.combine(accompaniment, anticipated)
print("Accompaniment generated")
# 1) render each voice separately
mel_mid = events_to_midi(melody)
acc_mid = events_to_midi(accompaniment)
# 2) build a fresh MidiFile
combined = mido.MidiFile()
combined.ticks_per_beat = mel_mid.ticks_per_beat # or TIME_RESOLUTION//2
print("Midi built")
# 3) meta‐track with tempo & time signature
meta = mido.MidiTrack()
meta.append(mido.MetaMessage('set_tempo', tempo=original_tempo))
meta.append(mido.MetaMessage('time_signature',
numerator=original_time_sig[0],
denominator=original_time_sig[1]))
combined.tracks.append(meta)
# 4) append melody *then* accompaniment
combined.tracks.extend(mel_mid.tracks[1:]) # Skip existing meta track
combined.tracks.extend(acc_mid.tracks[1:])
# 5) save in exactly that order
for track in combined.tracks:
for msg in track:
if msg.type in ['note_on', 'note_off']:
# Ensure valid MIDI values
if hasattr(msg, 'velocity'):
msg.velocity = min(max(msg.velocity, 0), 127)
if hasattr(msg, 'note'):
msg.note = min(max(msg.note, 0), 127)
print(f"Melody tracks: {len(mel_mid.tracks)}")
print(f"Accompaniment tracks: {len(acc_mid.tracks)}")
print(f"Combined tracks before cleanup: {len(combined.tracks)}")
# Add track cleanup (keep only unique tracks):
unique_tracks = []
seen = set()
for track in combined.tracks:
track_hash = str([msg.hex() for msg in track])
if track_hash not in seen:
unique_tracks.append(track)
seen.add(track_hash)
combined.tracks = unique_tracks
print(f"Final track count: {len(combined.tracks)}")
print("Output Midi metadata added")
return combined
def harmonizer(ai_model,midi_file, start_time, end_time,top_p):
"""
this function harmonizes a melody in a MIDI file
returns the harmonized MIDI
Args:
midi_file: path to the MIDI file
start_time: start time of the selected measure (melody you want to harmonize) in milliseconds
end_time: end time of the selected measure in milliseconds
"""
print(f"Original MIDI tracks: {len(midi_file.tracks)}")
# Load metadata and model...
# Log original note parameters
for track in midi_file.tracks:
for msg in track:
if msg.type in ['note_on', 'note_off']:
if msg.velocity > 127 or msg.velocity < 0:
print(f"Invalid velocity: {msg.velocity}")
if msg.note > 127 or msg.note < 0:
print(f"Invalid pitch: {msg.note}")
# Load original MIDI and extract metadata
midi, original_tempo, original_time_sig = load_midi_metadata(midi_file)
print("Midi metadata loaded")
# load an anticipatory music transformer
model = ai_model # add .cuda() if you have a GPU
print("Model loaded")
harmonized_midi = harmonize_midi(model, midi, start_time, end_time, original_tempo,original_time_sig,top_p)
print("Midi generated")
print(f"Harmonized MIDI tracks: {len(harmonized_midi.tracks)}")
# Add MIDI validation
for track in harmonized_midi.tracks:
for msg in track:
if msg.type in ['note_on', 'note_off']:
# Clamp invalid values
msg.velocity = min(max(msg.velocity, 0), 127)
msg.note = min(max(msg.note, 0), 127)
print("Midi saved")
return harmonized_midi
def infill_midi(model, midi, start_time, end_time,original_tempo,original_time_sig,top_p):
# Turn full midi to events
events = midi_to_events(midi)
print("Midi converted to events")
# Get clip from 0 to end of full midi
segment = ops.clip(events, 0, ops.max_time(events, seconds=True))
segment = ops.translate(segment, -ops.min_time(segment, seconds=False))
# Get initial prompt
history = ops.clip(events, 0, start_time, clip_duration=False)
anticipated = [CONTROL_OFFSET + tok for tok in ops.clip(events, end_time, ops.max_time(segment, seconds=True), clip_duration=False)]
# Generate accompaniment conditioning on melody
infilling = generate(model, start_time, end_time, inputs=history, controls=anticipated, top_p=top_p, debug=False)
# Append anticipated continuation to accompaniment
full_events = ops.combine(infilling, anticipated)
print("Accompaniment generated")
# 1) render each voice separately
full_mid = events_to_midi(full_events)
# 2) build a fresh MidiFile
combined = mido.MidiFile()
combined.ticks_per_beat = full_mid.ticks_per_beat # or TIME_RESOLUTION//2
print("Midi built")
# 3) meta‐track with tempo & time signature
meta = mido.MidiTrack()
meta.append(mido.MetaMessage('set_tempo', tempo=original_tempo))
meta.append(mido.MetaMessage('time_signature',
numerator=original_time_sig[0],
denominator=original_time_sig[1]))
combined.tracks.append(meta)
# 4) append melody *then* accompaniment
combined.tracks.extend(full_mid.tracks[:]) # Skip existing meta track
# 5) save in exactly that order
for track in combined.tracks:
for msg in track:
if msg.type in ['note_on', 'note_off']:
# Ensure valid MIDI values
if hasattr(msg, 'velocity'):
msg.velocity = min(max(msg.velocity, 0), 127)
if hasattr(msg, 'note'):
msg.note = min(max(msg.note, 0), 127)
print(f"Melody tracks: {len(full_mid.tracks)}")
print(f"Accompaniment tracks: {len(full_mid.tracks)}")
print(f"Combined tracks before cleanup: {len(combined.tracks)}")
# Add track cleanup (keep only unique tracks):
unique_tracks = []
seen = set()
for track in combined.tracks:
track_hash = str([msg.hex() for msg in track])
if track_hash not in seen:
unique_tracks.append(track)
seen.add(track_hash)
combined.tracks = unique_tracks
print(f"Final track count: {len(combined.tracks)}")
print("Output Midi metadata added")
return combined
def infiller(ai_model,midi_file, start_time, end_time,top_p):
"""
this function harmonizes a melody in a MIDI file
returns the harmonized MIDI
Args:
midi_file: path to the MIDI file
start_time: start time of the selected measure (melody you want to harmonize) in milliseconds
end_time: end time of the selected measure in milliseconds
"""
print(f"Original MIDI tracks: {len(midi_file.tracks)}")
# Load metadata and model...
# Log original note parameters
for track in midi_file.tracks:
for msg in track:
if msg.type in ['note_on', 'note_off']:
if msg.velocity > 127 or msg.velocity < 0:
print(f"Invalid velocity: {msg.velocity}")
if msg.note > 127 or msg.note < 0:
print(f"Invalid pitch: {msg.note}")
# Load original MIDI and extract metadata
midi, original_tempo, original_time_sig = load_midi_metadata(midi_file)
print("Midi metadata loaded")
# load an anticipatory music transformer
model = ai_model # add .cuda() if you have a GPU
print("Model loaded")
infilled_midi = infill_midi(model, midi, start_time, end_time, original_tempo,original_time_sig,top_p)
print("Midi generated")
print(f"Harmonized MIDI tracks: {len(infilled_midi.tracks)}")
# Add MIDI validation
for track in infilled_midi.tracks:
for msg in track:
if msg.type in ['note_on', 'note_off']:
# Clamp invalid values
msg.velocity = min(max(msg.velocity, 0), 127)
msg.note = min(max(msg.note, 0), 127)
print("Midi saved")
return infilled_midi
def change_melody_midi(model, midi, start_time, end_time,original_tempo,original_time_sig,top_p):
events = midi_to_events(midi)
segment = ops.clip(events, 0, ops.max_time(events, seconds=True))
segment = ops.translate(segment, -ops.min_time(segment, seconds=False))
# Extract melody (instrument 0) as events and accompaniment as controls
instruments = list(ops.get_instruments(segment).keys())
accompaniment_instruments = [instr for instr in instruments if instr != 0]
melody_events, accompaniment_controls = extract_instruments(segment, accompaniment_instruments)
# Get initial prompt (melody before start_time)
history = ops.clip(melody_events, 0, start_time, clip_duration=False)
# Include accompaniment controls for the entire duration
controls = accompaniment_controls # Full accompaniment as controls
# Generate new melody conditioned on accompaniment
infilling = generate(model, start_time, end_time, inputs=history, controls=controls, top_p=top_p, debug=False)
# Append anticipated continuation
anticipated_melody = [CONTROL_OFFSET + tok for tok in ops.clip(melody_events, end_time, ops.max_time(segment, seconds=True), clip_duration=False)]
full_events = ops.combine(infilling, anticipated_melody)
acc_mid = events_to_midi(accompaniment_controls)
# Render and combine MIDI tracks
full_mid = events_to_midi(full_events)
combined = mido.MidiFile()
combined.ticks_per_beat = full_mid.ticks_per_beat # or TIME_RESOLUTION//2
print("Midi built")
# 3) meta‐track with tempo & time signature
meta = mido.MidiTrack()
meta.append(mido.MetaMessage('set_tempo', tempo=original_tempo))
meta.append(mido.MetaMessage('time_signature',
numerator=original_time_sig[0],
denominator=original_time_sig[1]))
combined.tracks.append(meta)
# 4) append melody *then* accompaniment
combined.tracks.extend(full_mid.tracks[:]) # Skip existing meta track
combined.tracks.extend(acc_mid.tracks[:]) # Skip existing meta track
# 5) save in exactly that order
for track in combined.tracks:
for msg in track:
if msg.type in ['note_on', 'note_off']:
# Ensure valid MIDI values
if hasattr(msg, 'velocity'):
msg.velocity = min(max(msg.velocity, 0), 127)
if hasattr(msg, 'note'):
msg.note = min(max(msg.note, 0), 127)
print(f"Melody tracks: {len(full_mid.tracks)}")
print(f"Accompaniment tracks: {len(full_mid.tracks)}")
print(f"Combined tracks before cleanup: {len(combined.tracks)}")
# Add track cleanup (keep only unique tracks):
unique_tracks = []
seen = set()
for track in combined.tracks:
track_hash = str([msg.hex() for msg in track])
if track_hash not in seen:
unique_tracks.append(track)
seen.add(track_hash)
combined.tracks = unique_tracks
print(f"Final track count: {len(combined.tracks)}")
print("Output Midi metadata added")
return combined
def change_melody(ai_model,midi_file, start_time, end_time,top_p):
"""
this function harmonizes a melody in a MIDI file
returns the harmonized MIDI
Args:
midi_file: path to the MIDI file
start_time: start time of the selected measure (melody you want to harmonize) in milliseconds
end_time: end time of the selected measure in milliseconds
"""
print(f"Original MIDI tracks: {len(midi_file.tracks)}")
# Load metadata and model...
# Log original note parameters
for track in midi_file.tracks:
for msg in track:
if msg.type in ['note_on', 'note_off']:
if msg.velocity > 127 or msg.velocity < 0:
print(f"Invalid velocity: {msg.velocity}")
if msg.note > 127 or msg.note < 0:
print(f"Invalid pitch: {msg.note}")
# Load original MIDI and extract metadata
midi, original_tempo, original_time_sig = load_midi_metadata(midi_file)
print("Midi metadata loaded")
# load an anticipatory music transformer
model = ai_model # add .cuda() if you have a GPU
print("Model loaded")
change_melody_gen_midi = change_melody_midi(model, midi, start_time, end_time, original_tempo,original_time_sig,top_p)
print("Midi generated")
print(f"Harmonized MIDI tracks: {len(change_melody_gen_midi.tracks)}")
# Add MIDI validation
for track in change_melody_gen_midi.tracks:
for msg in track:
if msg.type in ['note_on', 'note_off']:
# Clamp invalid values
msg.velocity = min(max(msg.velocity, 0), 127)
msg.note = min(max(msg.note, 0), 127)
print("Midi saved")
return change_melody_gen_midi |