Centaur / app.py
marcelbinz's picture
Update app.py
1453861 verified
import spaces
import gradio as gr
import torch
from transformers import pipeline, BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer, AutoConfig
from peft import PeftModel
MODEL_ID = "unsloth/Meta-Llama-3.1-70B-bnb-4bit"
ADAPTER_ID = "marcelbinz/Llama-3.1-Centaur-70B-adapter"
cfg = AutoConfig.from_pretrained(MODEL_ID)
cfg.rope_scaling = {
"type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 8192,
}
cfg.max_position_embeddings = 32768
bnb_4bit_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model_base = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
attn_implementation="flash_attention_2",
config=cfg,
quantization_config=bnb_4bit_config,
)
model = PeftModel.from_pretrained(model_base, ADAPTER_ID, device_map="auto")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
)
@spaces.GPU
def infer(prompt):
return pipe(prompt, max_new_tokens=1, do_sample=True, temperature=1.0, return_full_text=True)[0]["generated_text"]
default_experiment = """You will be presented with triplets of objects, which will be assigned to the keys H, Y, and E.
In each trial, please indicate which object you think is the odd one out by pressing the corresponding key.
In other words, please choose the object that is the least similar to the other two.
H: plant, Y: chainsaw, and E: periscope. You press <<H>>.
H: tostada, Y: leaf, and E: sail. You press <<H>>.
H: clock, Y: crystal, and E: grate. You press <<Y>>.
H: barbed wire, Y: kale, and E: sweater. You press <<E>>.
H: raccoon, Y: toothbrush, and E: ice. You press <<"""
with gr.Blocks(
fill_width=True,
css="""
#prompt-box textarea {height:256px}
""",
) as demo:
gr.Image(
value="https://marcelbinz.github.io/imgs/centaur.png",
show_label=False,
height=180,
container=False,
elem_classes="mx-auto",
)
gr.Markdown(
"""
### How to prompt:
- We did not employ a particular prompt template – just phrase everything in natural language.
- Human choices are encapsulated by "<<" and ">>" tokens.
- Most experiments in the training data are framed in terms of button presses. If possible, it is recommended to use that style.
- You can find examples in the Supporting Information of our paper.
""",
elem_id="info-box",
)
inp = gr.Textbox(
label="Prompt",
elem_id="prompt-box",
lines=16,
max_lines=16,
scale=3,
value=default_experiment,
)
run = gr.Button("Run")
run.click(infer, inp, inp)
demo.queue().launch()