File size: 37,424 Bytes
3a62c95
 
4968617
 
 
3a62c95
 
 
 
 
 
 
 
 
4968617
3a62c95
 
 
 
4968617
3a62c95
 
 
 
 
6ce9877
4968617
 
 
 
 
 
 
 
 
 
6ce9877
 
 
 
 
 
 
 
 
4968617
 
 
 
 
 
 
 
 
 
6ce9877
 
 
 
 
 
 
 
 
4968617
 
 
 
 
 
 
 
 
 
6ce9877
 
 
 
 
 
 
 
 
4968617
 
 
 
 
 
 
 
 
 
6ce9877
 
 
 
 
 
 
 
 
4968617
 
 
 
 
 
 
 
 
 
6ce9877
 
 
 
 
 
 
 
 
4968617
 
 
6ce9877
4968617
6ce9877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4968617
6ce9877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0e3fb3
 
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0e3fb3
6ce9877
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a62c95
 
4968617
3a62c95
4968617
3a62c95
 
 
 
 
4968617
 
 
 
 
 
 
 
 
 
3a62c95
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a62c95
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
3a62c95
4968617
 
 
 
 
 
3a62c95
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a62c95
 
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a62c95
 
 
4968617
3a62c95
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8de84c
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a62c95
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a62c95
4968617
 
3a62c95
4968617
 
 
3a62c95
4968617
3a62c95
4968617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a62c95
 
4968617
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
import gradio as gr
import os
import json
import uuid
from datetime import datetime
from groq import Groq

# Set up Groq API key
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
    raise ValueError("GROQ_API_KEY environment variable not set.")

client = Groq(api_key=GROQ_API_KEY)

# Default system prompt
SYSTEM_PROMPT = (
    "You are an intelligent, friendly, and highly adaptable Teaching Assistant Chatbot. "
    "Your mission is to help users of all ages and skill levels—from complete beginners to seasoned professionals—learn Python, Data Science, and Artificial Intelligence. "
    "You explain concepts clearly using real-world analogies, examples, and interactive exercises. "
    "You ask questions to assess the learner's level, adapt accordingly, and provide learning paths tailored to their pace and goals. "
    "Your responses are structured, engaging, and supportive. "
    "You can explain code snippets, generate exercises and quizzes, and recommend projects. "
    "You never overwhelm users with jargon. Instead, you scaffold complex concepts in simple, digestible steps."
)

# Define learning paths with format options for different learning styles
LEARNING_PATHS = {
    "python_beginner": {
        "title": "Python Fundamentals",
        "description": "Learn Python basics from variables to functions",
        "modules": [
            "Variables & Data Types", 
            "Control Flow", 
            "Functions", 
            "Data Structures", 
            "File I/O"
        ],
        "resources": {
            "Visual": ["Interactive Python visualizers", "Flowcharts for algorithms", "Concept maps"],
            "Reading/Writing": ["Comprehensive Python documentation", "Written tutorials", "Practice exercises with solutions"],
            "Hands-on Projects": ["Mini-projects for each concept", "Code challenges", "GitHub repositories with starter code"],
            "Video Tutorials": ["Python beginner video series", "Live coding sessions", "Animated explanations"],
            "Interactive Exercises": ["Interactive coding environments", "Quizzes after each topic", "Peer programming exercises"],
            "Combination": ["Mix of videos, reading materials and hands-on practice"]
        }
    },
    "python_intermediate": {
        "title": "Intermediate Python",
        "description": "Advance your Python skills with OOP and more",
        "modules": [
            "Object-Oriented Programming", 
            "Modules & Packages", 
            "Error Handling", 
            "List Comprehensions", 
            "Decorators & Generators"
        ],
        "resources": {
            "Visual": ["OOP visualizers", "Package dependency graphs", "Error handling flowcharts"],
            "Reading/Writing": ["In-depth Python guides", "Advanced documentation", "Design pattern examples"],
            "Hands-on Projects": ["Medium-sized applications", "Library contributions", "Optimization challenges"],
            "Video Tutorials": ["Advanced Python concept videos", "Live implementation sessions", "Code reviews"],
            "Interactive Exercises": ["Advanced coding challenges", "Refactoring exercises", "Implementation quizzes"],
            "Combination": ["Mix of videos, reading materials and advanced projects"]
        }
    },
    "data_science_beginner": {
        "title": "Data Science Foundations",
        "description": "Begin your data science journey",
        "modules": [
            "Numpy Basics", 
            "Pandas Fundamentals", 
            "Data Visualization", 
            "Basic Statistics", 
            "Intro to Machine Learning"
        ],
        "resources": {
            "Visual": ["Data visualization galleries", "Statistical concept diagrams", "Algorithm flowcharts"],
            "Reading/Writing": ["Data science textbooks", "Research papers", "Case studies"],
            "Hands-on Projects": ["Dataset analysis projects", "Visualization portfolios", "Simple ML implementations"],
            "Video Tutorials": ["Data science fundamentals series", "Tool-specific tutorials", "Statistical concept videos"],
            "Interactive Exercises": ["Data analysis notebooks", "Interactive statistics demos", "ML model building exercises"],
            "Combination": ["Mix of data analysis, visualization practice and statistical theory"]
        }
    },
    "data_science_advanced": {
        "title": "Advanced Data Science",
        "description": "Master complex data science concepts",
        "modules": [
            "Advanced ML Algorithms", 
            "Feature Engineering", 
            "Time Series Analysis", 
            "Natural Language Processing", 
            "Deep Learning Basics"
        ],
        "resources": {
            "Visual": ["Complex algorithm visualizations", "Neural network architecture diagrams", "Feature importance plots"],
            "Reading/Writing": ["Academic papers", "Advanced statistics guides", "Mathematical foundations"],
            "Hands-on Projects": ["Kaggle competitions", "Research implementations", "Production-level ML systems"],
            "Video Tutorials": ["Expert talks", "Research paper walkthroughs", "Implementation guides"],
            "Interactive Exercises": ["Advanced model tuning", "Algorithm implementation", "Real-world data challenges"],
            "Combination": ["Mix of theoretical study, research implementation and real-world applications"]
        }
    },
    "ai_specialization": {
        "title": "AI Specialization",
        "description": "Focus on artificial intelligence concepts",
        "modules": [
            "Neural Networks", 
            "Computer Vision", 
            "Advanced NLP", 
            "Reinforcement Learning", 
            "AI Ethics"
        ],
        "resources": {
            "Visual": ["Neural network visualizers", "Computer vision demonstrations", "AI system diagrams"],
            "Reading/Writing": ["Research papers", "AI textbooks", "Ethics case studies"],
            "Hands-on Projects": ["Model implementations", "AI application development", "Research reproductions"],
            "Video Tutorials": ["Research paper explanations", "Implementation walkthroughs", "Expert interviews"],
            "Interactive Exercises": ["Model training exercises", "Hyperparameter tuning", "AI debugging workshops"],
            "Combination": ["Mix of theoretical study, practical implementation and ethical discussions"]
        }
    }
}

# Learning resources expanded for different learning styles
LEARNING_RESOURCES = {
    "python": {
        "Visual": [
            {"title": "Python Tutor - Code Visualization", "url": "http://pythontutor.com/"},
            {"title": "Real Python - Visual Guides", "url": "https://realpython.com/"},
            {"title": "Visualize Python - Concept Maps", "url": "https://pythonvisualization.example.org/"}
        ],
        "Reading/Writing": [
            {"title": "Python Documentation", "url": "https://docs.python.org/3/"},
            {"title": "Real Python", "url": "https://realpython.com/"},
            {"title": "Python for Everybody Book", "url": "https://www.py4e.com/"},
            {"title": "Automate the Boring Stuff with Python", "url": "https://automatetheboringstuff.com/"}
        ],
        "Hands-on Projects": [
            {"title": "Exercism Python Track", "url": "https://exercism.org/tracks/python"},
            {"title": "Project Euler", "url": "https://projecteuler.net/"},
            {"title": "Python Projects on GitHub", "url": "https://github.com/topics/python-projects"},
        ],
        "Video Tutorials": [
        {"title": "YouTube - Python Programming Tutorials", "url": "https://www.youtube.com/results?search_query=python+programming+tutorials"},
        {"title": "Coursera - Python Courses", "url": "https://www.coursera.org/courses?query=python"},
        {"title": "edX - Learn Python", "url": "https://www.edx.org/learn/python"},
        {"title": "Udemy - Python Video Courses", "url": "https://www.udemy.com/topic/python/"},
        {"title": "Khan Academy - Computer Programming", "url": "https://www.khanacademy.org/computing/computer-programming"}
        ],
        "Interactive Exercises": [
            {"title": "CheckiO Python Challenges", "url": "https://py.checkio.org/"},
            {"title": "HackerRank Python", "url": "https://www.hackerrank.com/domains/python"},
            {"title": "Codewars Python", "url": "https://www.codewars.com/?language=python"},
            {"title": "LeetCode Python", "url": "https://leetcode.com/problemset/all/?difficulty=Easy&topicSlugs=python"}
        ],
       "Video Tutorials": [
        {"title": "YouTube - Data Science Tutorials", "url": "https://www.youtube.com/results?search_query=data+science+tutorials"},
        {"title": "Coursera - Data Science Courses", "url": "https://www.coursera.org/browse/data-science"},
        {"title": "edX - Learn Data Science", "url": "https://www.edx.org/learn/data-science"},
        {"title": "Udacity - Data Science Programs", "url": "https://www.udacity.com/school-of-data-science"},
        {"title": "Udemy - Data Science Video Courses", "url": "https://www.udemy.com/topic/data-science/"}
    ]
    },
    "data_science": {
        "Visual": [
            {"title": "Seeing Theory - Visual Statistics", "url": "https://seeing-theory.brown.edu/"},
            {"title": "Data Visualization Catalogue", "url": "https://datavizcatalogue.com/"},
            {"title": "Visualizing Machine Learning", "url": "https://www.r2d3.us/visual-intro-to-machine-learning-part-1/"}
        ],
        "Reading/Writing": [
            {"title": "Towards Data Science", "url": "https://towardsdatascience.com/"},
            {"title": "Machine Learning Mastery", "url": "https://machinelearningmastery.com/"},
            {"title": "Data Science Handbook", "url": "https://jakevdp.github.io/PythonDataScienceHandbook/"},
            {"title": "Statistical Learning Book", "url": "https://www.statlearning.com/"}
        ],
        "Hands-on Projects": [
            {"title": "Kaggle Competitions", "url": "https://www.kaggle.com/competitions"},
            {"title": "Data Science Projects on GitHub", "url": "https://github.com/topics/data-science-projects"},
            {"title": "Real-world Data Science Tasks", "url": "https://www.drivendata.org/"},
            {"title": "UCI Machine Learning Repository", "url": "https://archive.ics.uci.edu/ml/index.php"}
        ],
        "Video Tutorials": [
            {"title": "StatQuest with Josh Starmer", "url": "https://www.youtube.com/c/joshstarmer"},
            {"title": "Data School", "url": "https://www.youtube.com/c/dataschool"},
            {"title": "3Blue1Brown Statistics", "url": "https://www.youtube.com/c/3blue1brown"},
            {"title": "Krish Naik Data Science", "url": "https://www.youtube.com/user/krishnaik06"}
        ],
        "Interactive Exercises": [
            {"title": "Kaggle Learn", "url": "https://www.kaggle.com/learn"},
            {"title": "DataQuest Interactive Lessons", "url": "https://www.dataquest.io/"},
            {"title": "Mode Analytics SQL Tutorial", "url": "https://mode.com/sql-tutorial/"},
            {"title": "IBM Data Science Exercise", "url": "https://cognitiveclass.ai/"}
        ],
        "Combination": [
            {"title": "DataCamp", "url": "https://www.datacamp.com/"},
            {"title": "Coursera Data Science Specialization", "url": "https://www.coursera.org/specializations/jhu-data-science"},
            {"title": "edX Data Science MicroMasters", "url": "https://www.edx.org/micromasters/mitx-statistics-and-data-science"},
            {"title": "Fast.ai Practical Data Science", "url": "https://www.fast.ai/"}
        ]
    },
    "ai": {
        "Visual": [
            {"title": "TensorFlow Playground", "url": "https://playground.tensorflow.org/"},
            {"title": "Distill.pub Visualizations", "url": "https://distill.pub/"},
            {"title": "AI Visuals & Explainers", "url": "https://pair.withgoogle.com/explorables/"}
        ],
        "Reading/Writing": [
            {"title": "arXiv AI Papers", "url": "https://arxiv.org/list/cs.AI/recent"},
            {"title": "AI Textbook", "url": "http://aima.cs.berkeley.edu/"},
            {"title": "Deep Learning Book", "url": "https://www.deeplearningbook.org/"},
            {"title": "Papers with Code", "url": "https://paperswithcode.com/"}
        ],
        "Hands-on Projects": [
            {"title": "AI Projects on GitHub", "url": "https://github.com/topics/artificial-intelligence"},
            {"title": "Hugging Face Model Hub", "url": "https://huggingface.co/models"},
            {"title": "TensorFlow Model Garden", "url": "https://github.com/tensorflow/models"},
            {"title": "PyTorch Examples", "url": "https://github.com/pytorch/examples"}
        ],
        "Video Tutorials": [
            {"title": "DeepMind YouTube", "url": "https://www.youtube.com/c/DeepMind"},
            {"title": "Yannic Kilcher AI Papers", "url": "https://www.youtube.com/c/YannicKilcher"},
            {"title": "MIT Deep Learning Lectures", "url": "https://www.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI"},
            {"title": "Stanford CS231n Videos", "url": "https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv"}
        ],
        "Interactive Exercises": [
            {"title": "Google AI Experiments", "url": "https://experiments.withgoogle.com/collection/ai"},
            {"title": "OpenAI Gym", "url": "https://gym.openai.com/"},
            {"title": "ML Playground", "url": "https://ml-playground.com/"},
            {"title": "Colab Research AI Projects", "url": "https://colab.research.google.com/"}
        ],
        "Combination": [
            {"title": "Fast.ai", "url": "https://www.fast.ai/"},
            {"title": "DeepLearning.AI", "url": "https://www.deeplearning.ai/"},
            {"title": "Coursera Machine Learning", "url": "https://www.coursera.org/learn/machine-learning"},
            {"title": "edX AI Courses", "url": "https://www.edx.org/learn/artificial-intelligence"}
        ]
    }
}

# Practice project ideas
PROJECT_IDEAS = {
    "python_beginner": [
        "To-Do List Application",
        "Simple Calculator",
        "Password Generator",
        "Hangman Game",
        "Basic File Organizer"
    ],
    "python_intermediate": [
        "Weather App with API",
        "Personal Blog with Flask",
        "Web Scraper for News Articles",
        "Data Visualization Dashboard",
        "Task Automation Scripts"
    ],
    "data_science": [
        "Housing Price Prediction",
        "Customer Segmentation Analysis",
        "Sentiment Analysis of Reviews",
        "Stock Price Forecasting",
        "A/B Test Analysis Dashboard"
    ],
    "ai": [
        "Image Classification System",
        "Chatbot with NLP",
        "Recommendation Engine",
        "Text Summarization Tool",
        "Object Detection Application"
    ]
}
# User session data store
SESSION_DATA = {}

def save_session(session_id, data):
    """Save session data to SESSION_DATA global dictionary"""
    if session_id in SESSION_DATA:
        SESSION_DATA[session_id].update(data)
    else:
        SESSION_DATA[session_id] = data
    
    # Add timestamp for session tracking
    SESSION_DATA[session_id]["last_activity"] = datetime.now().isoformat()

def load_session(session_id):
    """Load session data from SESSION_DATA global dictionary"""
    return SESSION_DATA.get(session_id, {})

def recommend_learning_path(age, goals, knowledge_level, interests):
    """Recommend personalized learning paths based on user profile"""
    paths = []
    
    # Simple recommendation logic based on profile
    if "beginner" in knowledge_level.lower():
        if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
            paths.append("python_beginner")
        if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
            paths.append("data_science_beginner")
    elif "intermediate" in knowledge_level.lower() or "advanced" in knowledge_level.lower():
        if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
            paths.append("python_intermediate")
        if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
            paths.append("data_science_advanced")
        if any(topic in interests.lower() for topic in ["ai", "machine learning", "deep learning"]):
            paths.append("ai_specialization")
    
    # Default path if no matches
    if not paths:
        paths = ["python_beginner"]
    
    return [LEARNING_PATHS[path] for path in paths if path in LEARNING_PATHS]

def get_recommended_resources(interests):
    """Get recommended learning resources based on interests"""
    resources = []
    if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
        resources.extend(LEARNING_RESOURCES["python"])
    if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
        resources.extend(LEARNING_RESOURCES["data_science"])
    if any(topic in interests.lower() for topic in ["ai", "machine learning", "deep learning"]):
        resources.extend(LEARNING_RESOURCES["ai"])
    
    # If no specific interests match, provide general resources
    if not resources:
        for category in LEARNING_RESOURCES:
            resources.extend(LEARNING_RESOURCES[category][:1])  # Add first resource from each category
    
    return resources

def get_project_ideas(learning_paths):
    """Get project ideas based on recommended learning paths"""
    ideas = []
    for path in learning_paths:
        path_id = next((k for k, v in LEARNING_PATHS.items() if v["title"] == path["title"]), None)
        if path_id:
            if path_id.startswith("python"):
                category = "python_beginner" if "beginner" in path_id else "python_intermediate"
                ideas.extend(PROJECT_IDEAS[category])
            elif path_id.startswith("data_science"):
                ideas.extend(PROJECT_IDEAS["data_science"])
            elif path_id.startswith("ai"):
                ideas.extend(PROJECT_IDEAS["ai"])
    
    # If no specific paths match, provide some general project ideas
    if not ideas:
        ideas = PROJECT_IDEAS["python_beginner"][:2] + PROJECT_IDEAS["data_science"][:2]
    
    return ideas[:5]  # Return up to 5 project ideas

def generate_quiz(topic, difficulty):
    """Generate a quiz based on the topic and difficulty"""
    # In a real application, you might use the LLM to generate quizzes
    # Here we're using a template approach for simplicity
    quiz_prompt = f"""
    Generate a {difficulty} level quiz on {topic} with 3 multiple-choice questions.
    For each question, provide 4 options and indicate the correct answer.
    Format the quiz nicely with clear question numbering and option lettering.
    """
    
    # Use Groq to generate the quiz
    quiz_messages = [
        {"role": "system", "content": SYSTEM_PROMPT},
        {"role": "user", "content": quiz_prompt}
    ]
    
    quiz_response = client.chat.completions.create(
        messages=quiz_messages,
        model="llama-3.3-70b-versatile",
        stream=False
    )
    
    return quiz_response.choices[0].message.content

def create_study_plan(topic, time_available, goals):
    """Create a personalized study plan"""
    plan_prompt = f"""
    Create a structured study plan for learning {topic} with {time_available} hours per week available for study.
    The learner's goal is: {goals}
    
    Include:
    1. Weekly breakdown of topics
    2. Time allocation for theory vs practice
    3. Recommended resources for each week
    4. Milestone projects or assessments
    5. Tips for effective learning
    """
    
    # Use Groq to generate the study plan
    plan_messages = [
        {"role": "system", "content": SYSTEM_PROMPT},
        {"role": "user", "content": plan_prompt}
    ]
    
    plan_response = client.chat.completions.create(
        messages=plan_messages,
        model="llama-3.3-70b-versatile",
        stream=False
    )
    
    return plan_response.choices[0].message.content

def chat_with_groq(user_input, session_id):
    """Chat with Groq LLM using session context"""
    user_data = load_session(session_id)
    
    # Build context from session data if available
    context = ""
    if user_data:
        context = f"""
        User Profile:
        - Age: {user_data.get('age', 'Unknown')}
        - Knowledge Level: {user_data.get('knowledge_level', 'Unknown')}
        - Learning Goals: {user_data.get('goals', 'Unknown')}
        - Interests: {user_data.get('interests', 'Unknown')}
        - Available Study Time: {user_data.get('study_time', 'Unknown')} hours per week
        - Preferred Learning Style: {user_data.get('learning_style', 'Unknown')}
        
        Based on this profile, tailor your response appropriately.
        """
    
    # Add chat history context if available
    chat_history = user_data.get('chat_history', [])
    if chat_history:
        context += "\n\nRecent conversation context (most recent first):\n"
        # Include up to 3 most recent exchanges
        for i, (q, a) in enumerate(reversed(chat_history[-3:])):
            context += f"User: {q}\nYou: {a}\n\n"
    
    # Combine everything for the LLM
    full_prompt = f"{context}\n\nUser's current question: {user_input}"
    
    messages = [
        {"role": "system", "content": SYSTEM_PROMPT},
        {"role": "user", "content": full_prompt}
    ]
    
    chat_completion = client.chat.completions.create(
        messages=messages,
        model="llama-3.3-70b-versatile",
        stream=False
    )
    
    response = chat_completion.choices[0].message.content
    
    # Update chat history
    if 'chat_history' not in user_data:
        user_data['chat_history'] = []
    user_data['chat_history'].append((user_input, response))
    save_session(session_id, user_data)
    
    return response

def format_learning_paths(paths):
    """Format learning paths for display"""
    if not paths:
        return "No specific learning paths recommended yet. Please complete your profile."
    
    result = "### Recommended Learning Paths\n\n"
    for i, path in enumerate(paths, 1):
        result += f"**{i}. {path['title']}**\n"
        result += f"{path['description']}\n\n"
        result += "**Modules:**\n"
        for module in path['modules']:
            result += f"- {module}\n"
        result += "\n"
    
    return result

def format_resources(resources):
    """Format resources for display"""
    if not resources:
        return "No resources recommended yet. Please complete your profile."
    
    result = "### Recommended Learning Resources\n\n"
    for i, resource in enumerate(resources, 1):
        result += f"{i}. [{resource['title']}]({resource['url']})\n"
    
    return result

def format_project_ideas(ideas):
    """Format project ideas for display"""
    if not ideas:
        return "No project ideas recommended yet. Please complete your profile."
    
    result = "### Recommended Practice Projects\n\n"
    for i, idea in enumerate(ideas, 1):
        result += f"{i}. {idea}\n"
    
    return result

def user_onboarding(session_id, age, goals, knowledge_level, interests, study_time, learning_style):
    """Process user profile and provide initial recommendations"""
    # Save user profile data
    user_data = {
        'age': age,
        'goals': goals,
        'knowledge_level': knowledge_level,
        'interests': interests,
        'study_time': study_time,
        'learning_style': learning_style
    }
    save_session(session_id, user_data)
    
    # Generate recommendations
    learning_paths = recommend_learning_path(age, goals, knowledge_level, interests)
    resources = get_recommended_resources(interests)
    project_ideas = get_project_ideas(learning_paths)
    
    # Save recommendations to session
    user_data.update({
        'recommended_paths': learning_paths,
        'recommended_resources': resources,
        'recommended_projects': project_ideas
    })
    save_session(session_id, user_data)
    
    # Format welcome message with personalized recommendations
    welcome_message = f"""
    # Welcome to Your Personalized Learning Journey!

    Thank you for providing your profile. Based on your information, I've prepared some tailored recommendations to start your learning journey.
    
    ## Your Profile Summary:
    - **Age:** {age}
    - **Knowledge Level:** {knowledge_level}
    - **Learning Goals:** {goals}
    - **Interests:** {interests}
    - **Available Study Time:** {study_time} hours per week
    - **Preferred Learning Style:** {learning_style}
    
    {format_learning_paths(learning_paths)}
    
    {format_resources(resources)}
    
    {format_project_ideas(project_ideas)}
    
    ## Next Steps:
    1. Browse through the recommended learning paths and resources
    2. Ask me any questions about the topics you're interested in
    3. Request exercises, explanations, or code samples
    4. Try one of the project ideas to apply your knowledge
    
    I'm here to help you every step of the way! What would you like to explore first?
    """
    
    return welcome_message

def chatbot_interface(session_id, user_message):
    """Main chatbot interface function"""
    user_data = load_session(session_id)
    
    if not user_data or not user_data.get('age'):
        return "Please complete your profile first by going to the Profile tab."
    
    response = chat_with_groq(user_message, session_id)
    return response

def generate_recommendations(session_id):
    """Generate or refresh recommendations based on current profile"""
    user_data = load_session(session_id)
    
    if not user_data or not user_data.get('age'):
        return "Please complete your profile first by going to the Profile tab."
    
    # Generate fresh recommendations
    learning_paths = recommend_learning_path(
        user_data.get('age', ''), 
        user_data.get('goals', ''), 
        user_data.get('knowledge_level', ''),
        user_data.get('interests', '')
    )
    resources = get_recommended_resources(user_data.get('interests', ''))
    project_ideas = get_project_ideas(learning_paths)
    
    # Save recommendations to session
    user_data.update({
        'recommended_paths': learning_paths,
        'recommended_resources': resources,
        'recommended_projects': project_ideas
    })
    save_session(session_id, user_data)
    
    # Format recommendations
    recommendations = f"""
    # Your Personalized Learning Recommendations
    
    {format_learning_paths(learning_paths)}
    
    {format_resources(resources)}
    
    {format_project_ideas(project_ideas)}
    """
    
    return recommendations

def handle_quiz_request(session_id, topic, difficulty):
    """Handle quiz generation request"""
    user_data = load_session(session_id)
    
    if not user_data or not user_data.get('age'):
        return "Please complete your profile first by going to the Profile tab."
    
    quiz = generate_quiz(topic, difficulty)
    return quiz

def handle_study_plan_request(session_id, topic, time_available):
    """Handle study plan generation request"""
    user_data = load_session(session_id)
    
    if not user_data or not user_data.get('age'):
        return "Please complete your profile first by going to the Profile tab."
    
    goals = user_data.get('goals', 'improving skills')
    study_plan = create_study_plan(topic, time_available, goals)
    return study_plan

def create_chatbot():
    """Create the Gradio interface for the chatbot"""
    # Generate a random session ID for the user
    session_id = str(uuid.uuid4())
    
    # Define theme colors and styling
    primary_color = "#4a6fa5"
    secondary_color = "#6c757d"
    success_color = "#28a745"
    light_color = "#f8f9fa"
    dark_color = "#343a40"
    
    custom_css = f"""
        :root {{
            --primary-color: {primary_color};
            --secondary-color: {secondary_color};
            --success-color: {success_color};
            --light-color: {light_color};
            --dark-color: {dark_color};
        }}
        .gradio-container {{ 
            background-color: var(--light-color); 
            font-family: 'Inter', 'Segoe UI', sans-serif; 
        }}
        #title {{ 
            font-size: 32px; 
            font-weight: bold; 
            text-align: center; 
            padding-top: 20px; 
            color: var(--primary-color);
            margin-bottom: 0;
        }}
        #subtitle {{ 
            font-size: 18px; 
            text-align: center; 
            margin-bottom: 20px; 
            color: var(--secondary-color); 
        }}
        .card {{
            background-color: white;
            padding: 20px;
            border-radius: 12px;
            box-shadow: 0 4px 10px rgba(0,0,0,0.08);
            margin-bottom: 20px;
        }}
        .tabs {{
            margin-top: 20px;
        }}
        .gr-button-primary {{ 
            background-color: var(--primary-color) !important; 
        }}
        .gr-button-secondary {{ 
            background-color: var(--secondary-color) !important; 
        }}
        .gr-button-success {{ 
            background-color: var(--success-color) !important; 
        }}
        .footer {{
            text-align: center;
            margin-top: 30px;
            padding: 10px;
            font-size: 14px;
            color: var(--secondary-color);
        }}
        .progress-module {{
            padding: 10px;
            margin: 5px 0;
            border-radius: 5px;
            background-color: #e9ecef;
        }}
        .progress-module.completed {{
            background-color: #d4edda;
        }}
    """
    
    with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue")) as demo:
        gr.HTML("<div id='title'>🎓 AI Teaching Assistant</div>")
        gr.HTML("<div id='subtitle'>Your personalized learning companion for Python, Data Science & AI</div>")
        
        # Tabs for different sections
        with gr.Tabs(elem_classes=["tabs"]) as tabs:
            # Profile Tab
            with gr.Tab("Profile & Goals"):
                with gr.Column(elem_classes=["card"]):
                    gr.HTML("<h3>Complete Your Learning Profile</h3>")
                    
                    with gr.Row():
                        with gr.Column(scale=1):
                            age_input = gr.Textbox(
                                label="Age", 
                                placeholder="e.g. 20",
                                lines=1
                            )
                        with gr.Column(scale=2):
                            knowledge_level_input = gr.Dropdown(
                                choices=["Beginner", "Intermediate", "Advanced", "Expert"],
                                label="Knowledge Level",
                                value="Beginner"
                            )
                    
                    goals_input = gr.Textbox(
                        label="Learning Goals", 
                        placeholder="e.g. I want to become a data scientist and work with machine learning models",
                        lines=2
                    )
                    
                    interests_input = gr.Textbox(
                        label="Specific Interests", 
                        placeholder="e.g. Python, data visualization, neural networks",
                        lines=2
                    )
                    
                    with gr.Row():
                        with gr.Column(scale=1):
                            study_time_input = gr.Dropdown(
                                choices=["1-3", "4-6", "7-10", "10+"],
                                label="Hours Available Weekly",
                                value="4-6"
                            )
                        with gr.Column(scale=2):
                            learning_style_input = gr.Dropdown(
                                choices=["Visual", "Reading/Writing", "Hands-on Projects", "Video Tutorials", "Interactive Exercises", "Combination"],
                                label="Preferred Learning Style",
                                value="Combination"
                            )
                    
                    profile_submit_btn = gr.Button("Save Profile & Generate Recommendations", variant="primary")
                    profile_output = gr.Markdown(label="Personalized Recommendations")
            
            # Chat Tab
            with gr.Tab("Learning Assistant"):
                with gr.Row():
                    with gr.Column(elem_classes=["card"]):
                        chat_input = gr.Textbox(
                            label="Ask a Question",
                            placeholder="Ask anything about Python, Data Science, AI...",
                            lines=3
                        )
                        
                        with gr.Row():
                            chat_submit_btn = gr.Button("Send Message", variant="primary")
                            chat_clear_btn = gr.Button("Clear Chat", variant="secondary")
                        
                        chat_output = gr.Markdown(label="Assistant Response")
            
            # Resources Tab
            with gr.Tab("Resources & Recommendations"):
                with gr.Column(elem_classes=["card"]):
                    gr.HTML("<h3>Your Learning Resources</h3>")
                    refresh_recommendations_btn = gr.Button("Refresh Recommendations", variant="primary")
                    recommendations_output = gr.Markdown(label="Personalized Recommendations")
            
            # Practice Tab
            with gr.Tab("Practice & Assessment"):
                with gr.Column(elem_classes=["card"]):
                    gr.HTML("<h3>Generate a Quiz</h3>")
                    
                    with gr.Row():
                        quiz_topic_input = gr.Textbox(
                            label="Quiz Topic", 
                            placeholder="e.g. Python Lists",
                            lines=1
                        )
                        quiz_difficulty_input = gr.Dropdown(
                            choices=["Beginner", "Intermediate", "Advanced"],
                            label="Difficulty Level",
                            value="Beginner"
                        )
                    
                    generate_quiz_btn = gr.Button("Generate Quiz", variant="primary")
                    quiz_output = gr.Markdown(label="Quiz")
            
            # Study Plan Tab
            with gr.Tab("Study Plan"):
                with gr.Column(elem_classes=["card"]):
                    gr.HTML("<h3>Generate a Personalized Study Plan</h3>")
                    
                    with gr.Row():
                        plan_topic_input = gr.Textbox(
                            label="Study Topic", 
                            placeholder="e.g. Data Science",
                            lines=1
                        )
                        plan_time_input = gr.Dropdown(
                            choices=["1-3", "4-6", "7-10", "10+"],
                            label="Hours Available Weekly",
                            value="4-6"
                        )
                    
                    generate_plan_btn = gr.Button("Generate Study Plan", variant="primary")
                    plan_output = gr.Markdown(label="Personalized Study Plan")
        
        gr.HTML("""<div class="footer">
            AI Teaching Assistant Pro | Version 2.0 | © 2025 | Powered by Groq AI
        </div>""")
        
        # Event handlers
        profile_submit_btn.click(
            user_onboarding,
            inputs=[
                gr.State(session_id), 
                age_input, 
                goals_input, 
                knowledge_level_input,
                interests_input,
                study_time_input,
                learning_style_input
            ],
            outputs=profile_output
        )
        
        chat_submit_btn.click(
            chatbot_interface,
            inputs=[gr.State(session_id), chat_input],
            outputs=chat_output
        )
        
        chat_clear_btn.click(
            lambda: "",
            inputs=[],
            outputs=[chat_output, chat_input]
        )
        
        refresh_recommendations_btn.click(
            generate_recommendations,
            inputs=[gr.State(session_id)],
            outputs=recommendations_output
        )
        
        generate_quiz_btn.click(
            handle_quiz_request,
            inputs=[gr.State(session_id), quiz_topic_input, quiz_difficulty_input],
            outputs=quiz_output
        )
        
        generate_plan_btn.click(
            handle_study_plan_request,
            inputs=[gr.State(session_id), plan_topic_input, plan_time_input],
            outputs=plan_output
        )
    
    return demo

# Run the chatbot
if __name__ == "__main__":
    app = create_chatbot()
    app.launch()