maria355's picture
Update app.py
fd8fbe1 verified
raw
history blame
36.2 kB
import gradio as gr
import os
import json
import uuid
from datetime import datetime
from groq import Groq
# Set up Groq API key
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
raise ValueError("GROQ_API_KEY environment variable not set.")
client = Groq(api_key=GROQ_API_KEY)
# Default system prompt
SYSTEM_PROMPT = (
"You are an intelligent, friendly, and highly adaptable Teaching Assistant Chatbot. "
"Your mission is to help users of all ages and skill levels—from complete beginners to seasoned professionals—learn Python, Data Science, and Artificial Intelligence. "
"You explain concepts clearly using real-world analogies, examples, and interactive exercises. "
"You ask questions to assess the learner's level, adapt accordingly, and provide learning paths tailored to their pace and goals. "
"Your responses are structured, engaging, and supportive. "
"You can explain code snippets, generate exercises and quizzes, and recommend projects. "
"You never overwhelm users with jargon. Instead, you scaffold complex concepts in simple, digestible steps."
)
# Define learning paths
LEARNING_PATHS = {
"python_beginner": {
"title": "Python Fundamentals",
"description": "Learn Python basics from variables to functions",
"modules": [
"Variables & Data Types",
"Control Flow",
"Functions",
"Data Structures",
"File I/O"
]
},
"python_intermediate": {
"title": "Intermediate Python",
"description": "Advance your Python skills with OOP and more",
"modules": [
"Object-Oriented Programming",
"Modules & Packages",
"Error Handling",
"List Comprehensions",
"Decorators & Generators"
]
},
"data_science_beginner": {
"title": "Data Science Foundations",
"description": "Begin your data science journey",
"modules": [
"Numpy Basics",
"Pandas Fundamentals",
"Data Visualization",
"Basic Statistics",
"Intro to Machine Learning"
]
},
"data_science_advanced": {
"title": "Advanced Data Science",
"description": "Master complex data science concepts",
"modules": [
"Advanced ML Algorithms",
"Feature Engineering",
"Time Series Analysis",
"Natural Language Processing",
"Deep Learning Basics"
]
},
"ai_specialization": {
"title": "AI Specialization",
"description": "Focus on artificial intelligence concepts",
"modules": [
"Neural Networks",
"Computer Vision",
"Advanced NLP",
"Reinforcement Learning",
"AI Ethics"
]
},
"generative_ai": {
"title": "Generative AI",
"description": "Learn how to build and work with generative AI systems",
"modules": [
"Generative Models Overview",
"GANs & Diffusion Models",
"Large Language Models",
"Prompt Engineering",
"Fine-tuning & RLHF"
]
},
"agentic_ai": {
"title": "Agentic AI Systems",
"description": "Explore AI systems that can act autonomously",
"modules": [
"Foundations of AI Agents",
"Planning & Decision Making",
"Tool-using AI Systems",
"Multi-agent Architectures",
"Human-AI Collaboration"
]
}
}
# Learning resources
LEARNING_RESOURCES = {
"python_beginner": [
{"title": "Python Documentation", "url": "https://docs.python.org/3/"},
{"title": "Real Python", "url": "https://realpython.com/"},
{"title": "Python for Everybody", "url": "https://www.py4e.com/"},
{"title": "Automate the Boring Stuff with Python", "url": "https://automatetheboringstuff.com/"}
],
"python_intermediate": [
{"title": "Fluent Python", "url": "https://www.oreilly.com/library/view/fluent-python-2nd/9781492056348/"},
{"title": "Python Design Patterns", "url": "https://refactoring.guru/design-patterns/python"},
{"title": "Full Stack Python", "url": "https://www.fullstackpython.com/"},
{"title": "Python Testing with pytest", "url": "https://pragprog.com/titles/bopytest/python-testing-with-pytest/"}
],
"data_science_beginner": [
{"title": "Kaggle Learn", "url": "https://www.kaggle.com/learn"},
{"title": "Towards Data Science", "url": "https://towardsdatascience.com/"},
{"title": "DataCamp", "url": "https://www.datacamp.com/"},
{"title": "Python Data Science Handbook", "url": "https://jakevdp.github.io/PythonDataScienceHandbook/"}
],
"data_science_advanced": [
{"title": "Machine Learning Mastery", "url": "https://machinelearningmastery.com/"},
{"title": "Hands-On Machine Learning with Scikit-Learn", "url": "https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/"},
{"title": "Fast.ai", "url": "https://www.fast.ai/"},
{"title": "Stanford CS229: Machine Learning", "url": "https://see.stanford.edu/Course/CS229"}
],
"ai_specialization": [
{"title": "DeepLearning.AI", "url": "https://www.deeplearning.ai/"},
{"title": "TensorFlow Tutorials", "url": "https://www.tensorflow.org/tutorials"},
{"title": "PyTorch Tutorials", "url": "https://pytorch.org/tutorials/"},
{"title": "Hugging Face Course", "url": "https://huggingface.co/learn"}
],
"generative_ai": [
{"title": "Andrej Karpathy's Neural Networks Course", "url": "https://karpathy.ai/zero-to-hero.html"},
{"title": "Hugging Face Diffusion Models Course", "url": "https://huggingface.co/learn/diffusion-models/"},
{"title": "Prompt Engineering Guide", "url": "https://www.promptingguide.ai/"},
{"title": "Stanford CS324: Large Language Models", "url": "https://stanford-cs324.github.io/winter2022/"}
],
"agentic_ai": [
{"title": "LangChain Documentation", "url": "https://python.langchain.com/docs/get_started/introduction"},
{"title": "Microsoft AutoGen", "url": "https://microsoft.github.io/autogen/"},
{"title": "Multi-Agent Debate by Anthropic", "url": "https://www.anthropic.com/research/debate"},
{"title": "Berkeley CS285: Deep Reinforcement Learning", "url": "https://rail.eecs.berkeley.edu/deeprlcourse/"}
]
}
# Practice project ideas
PROJECT_IDEAS = {
"python_beginner": [
"To-Do List Application",
"Simple Calculator",
"Password Generator",
"Hangman Game",
"Basic File Organizer"
],
"python_intermediate": [
"Weather App with API",
"Personal Blog with Flask",
"Web Scraper for News Articles",
"Data Visualization Dashboard",
"Task Automation Scripts"
],
"data_science_beginner": [
"Exploratory Data Analysis of Public Dataset",
"Basic Dashboard with Plotly",
"Linear Regression Model for Predictions",
"Data Cleaning Pipeline",
"Statistical Analysis Report"
],
"data_science_advanced": [
"Housing Price Prediction",
"Customer Segmentation Analysis",
"Sentiment Analysis of Reviews",
"Stock Price Forecasting",
"A/B Test Analysis Dashboard"
],
"ai_specialization": [
"Image Classification System",
"Chatbot with NLP",
"Recommendation Engine",
"Text Summarization Tool",
"Object Detection Application"
],
"generative_ai": [
"Fine-tuned GPT Model for Specific Domain",
"Text-to-Image Generation App",
"AI Story Generator",
"Custom ChatGPT Plugin",
"Music Generation System"
],
"agentic_ai": [
"Autonomous Research Assistant",
"Multi-Agent Simulation",
"Tool-Using Chatbot",
"Task Planning Agent",
"Autonomous Data Analysis System"
]
}
# User session data store
SESSION_DATA = {}
def save_session(session_id, data):
"""Save session data to SESSION_DATA global dictionary"""
if session_id in SESSION_DATA:
SESSION_DATA[session_id].update(data)
else:
SESSION_DATA[session_id] = data
# Add timestamp for session tracking
SESSION_DATA[session_id]["last_activity"] = datetime.now().isoformat()
def load_session(session_id):
"""Load session data from SESSION_DATA global dictionary"""
return SESSION_DATA.get(session_id, {})
def recommend_learning_path(age, goals, knowledge_level, interests):
"""Recommend personalized learning paths based on user profile"""
paths = []
# Simple recommendation logic based on profile
if "beginner" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
paths.append("python_beginner")
if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
paths.append("data_science_beginner")
elif "intermediate" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
paths.append("python_intermediate")
if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
paths.append("data_science_advanced")
if any(topic in interests.lower() for topic in ["ai", "machine learning", "deep learning"]):
paths.append("ai_specialization")
if any(topic in interests.lower() for topic in ["generative", "gpt", "llm", "diffusion"]):
paths.append("generative_ai")
elif "advanced" in knowledge_level.lower() or "expert" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["ai", "machine learning", "deep learning"]):
paths.append("ai_specialization")
if any(topic in interests.lower() for topic in ["generative", "gpt", "llm", "diffusion"]):
paths.append("generative_ai")
if any(topic in interests.lower() for topic in ["agent", "autonomous", "planning"]):
paths.append("agentic_ai")
# Check for specific mentions of generative or agentic AI regardless of level
if any(topic in interests.lower() for topic in ["generative", "gpt", "llm", "diffusion"]):
if "generative_ai" not in paths:
paths.append("generative_ai")
if any(topic in interests.lower() for topic in ["agent", "autonomous", "planning"]):
if "agentic_ai" not in paths:
paths.append("agentic_ai")
# Default path if no matches
if not paths:
paths = ["python_beginner"]
return [LEARNING_PATHS[path] for path in paths if path in LEARNING_PATHS]
def get_recommended_resources(interests, knowledge_level, recommended_paths):
"""Get recommended learning resources based on interests and recommended paths"""
resources = []
# Get path IDs from recommended paths
path_ids = []
for path in recommended_paths:
path_id = next((k for k, v in LEARNING_PATHS.items() if v["title"] == path["title"]), None)
if path_id:
path_ids.append(path_id)
# Add resources for each recommended path
for path_id in path_ids:
if path_id in LEARNING_RESOURCES:
resources.extend(LEARNING_RESOURCES[path_id])
# If no specific paths match, provide resources based on interests and level
if not resources:
if "beginner" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
resources.extend(LEARNING_RESOURCES["python_beginner"])
if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
resources.extend(LEARNING_RESOURCES["data_science_beginner"])
elif "intermediate" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["python", "programming", "coding"]):
resources.extend(LEARNING_RESOURCES["python_intermediate"])
if any(topic in interests.lower() for topic in ["data", "analysis", "statistics"]):
resources.extend(LEARNING_RESOURCES["data_science_advanced"])
elif "advanced" in knowledge_level.lower() or "expert" in knowledge_level.lower():
if any(topic in interests.lower() for topic in ["ai", "machine learning", "deep learning"]):
resources.extend(LEARNING_RESOURCES["ai_specialization"])
# If still no resources, provide general resources
if not resources:
for category in ["python_beginner", "data_science_beginner"]:
resources.extend(LEARNING_RESOURCES[category][:2])
# Remove duplicates while preserving order
unique_resources = []
seen_titles = set()
for resource in resources:
if resource["title"] not in seen_titles:
seen_titles.add(resource["title"])
unique_resources.append(resource)
return unique_resources
def get_project_ideas(recommended_paths):
"""Get project ideas based on recommended learning paths"""
ideas = []
# Get project ideas for each recommended path
for path in recommended_paths:
path_id = next((k for k, v in LEARNING_PATHS.items() if v["title"] == path["title"]), None)
if path_id and path_id in PROJECT_IDEAS:
ideas.extend(PROJECT_IDEAS[path_id])
# If no specific paths match, provide some general project ideas
if not ideas:
ideas = PROJECT_IDEAS["python_beginner"][:2] + PROJECT_IDEAS["data_science_beginner"][:2]
# Remove duplicates while preserving order
unique_ideas = []
seen_ideas = set()
for idea in ideas:
if idea not in seen_ideas:
seen_ideas.add(idea)
unique_ideas.append(idea)
return unique_ideas[:5] # Return up to 5 project ideas
def generate_quiz(topic, difficulty):
"""Generate a quiz based on the topic and difficulty"""
# In a real application, you might use the LLM to generate quizzes
# Here we're using a template approach for simplicity
quiz_prompt = f"""
Generate a {difficulty} level quiz on {topic} with 3 multiple-choice questions.
For each question, provide 4 options and indicate the correct answer.
Format the quiz nicely with clear question numbering and option lettering.
"""
# Use Groq to generate the quiz
quiz_messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": quiz_prompt}
]
quiz_response = client.chat.completions.create(
messages=quiz_messages,
model="llama-3.3-70b-versatile",
stream=False
)
return quiz_response.choices[0].message.content
def create_study_plan(topic, time_available, goals, knowledge_level):
"""Create a personalized study plan"""
plan_prompt = f"""
Create a structured study plan for learning {topic} with {time_available} hours per week available for study.
The learner's goal is: {goals}
The learner's knowledge level is: {knowledge_level}
Include:
1. Weekly breakdown of topics
2. Time allocation for theory vs practice
3. Recommended resources for each week
4. Milestone projects or assessments
5. Tips for effective learning
Make this plan specific, actionable, and tailored to the knowledge level.
"""
# Use Groq to generate the study plan
plan_messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": plan_prompt}
]
plan_response = client.chat.completions.create(
messages=plan_messages,
model="llama-3.3-70b-versatile",
stream=False
)
return plan_response.choices[0].message.content
def chat_with_groq(user_input, session_id):
"""Chat with Groq LLM using session context"""
user_data = load_session(session_id)
# Build context from session data if available
context = ""
if user_data:
context = f"""
User Profile:
- Age: {user_data.get('age', 'Unknown')}
- Knowledge Level: {user_data.get('knowledge_level', 'Unknown')}
- Learning Goals: {user_data.get('goals', 'Unknown')}
- Interests: {user_data.get('interests', 'Unknown')}
- Available Study Time: {user_data.get('study_time', 'Unknown')} hours per week
- Preferred Learning Style: {user_data.get('learning_style', 'Unknown')}
Based on this profile, tailor your response appropriately.
"""
# Add chat history context if available
chat_history = user_data.get('chat_history', [])
if chat_history:
context += "\n\nRecent conversation context (most recent first):\n"
# Include up to 3 most recent exchanges
for i, (q, a) in enumerate(reversed(chat_history[-3:])):
context += f"User: {q}\nYou: {a}\n\n"
# Combine everything for the LLM
full_prompt = f"{context}\n\nUser's current question: {user_input}"
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": full_prompt}
]
chat_completion = client.chat.completions.create(
messages=messages,
model="llama-3.3-70b-versatile",
stream=False
)
response = chat_completion.choices[0].message.content
# Update chat history
if 'chat_history' not in user_data:
user_data['chat_history'] = []
user_data['chat_history'].append((user_input, response))
save_session(session_id, user_data)
return response
def format_learning_paths(paths):
"""Format learning paths for display"""
if not paths:
return "No specific learning paths recommended yet. Please complete your profile."
result = "### Recommended Learning Paths\n\n"
for i, path in enumerate(paths, 1):
result += f"**{i}. {path['title']}**\n"
result += f"{path['description']}\n\n"
result += "**Modules:**\n"
for module in path['modules']:
result += f"- {module}\n"
result += "\n"
return result
def format_resources(resources):
"""Format resources for display"""
if not resources:
return "No resources recommended yet. Please complete your profile."
result = "### Recommended Learning Resources\n\n"
for i, resource in enumerate(resources, 1):
result += f"{i}. [{resource['title']}]({resource['url']})\n"
return result
def format_project_ideas(ideas):
"""Format project ideas for display"""
if not ideas:
return "No project ideas recommended yet. Please complete your profile."
result = "### Recommended Practice Projects\n\n"
for i, idea in enumerate(ideas, 1):
result += f"{i}. {idea}\n"
return result
def user_onboarding(session_id, age, goals, knowledge_level, interests, study_time, learning_style):
"""Process user profile and provide initial recommendations"""
# Save user profile data
user_data = {
'age': age,
'goals': goals,
'knowledge_level': knowledge_level,
'interests': interests,
'study_time': study_time,
'learning_style': learning_style
}
save_session(session_id, user_data)
# Generate recommendations
learning_paths = recommend_learning_path(age, goals, knowledge_level, interests)
resources = get_recommended_resources(interests, knowledge_level, learning_paths)
project_ideas = get_project_ideas(learning_paths)
# Save recommendations to session
user_data.update({
'recommended_paths': learning_paths,
'recommended_resources': resources,
'recommended_projects': project_ideas
})
save_session(session_id, user_data)
# Format welcome message with personalized recommendations
welcome_message = f"""
# Welcome to Your Personalized Learning Journey!
Thank you for providing your profile. Based on your information, I've prepared some tailored recommendations to start your learning journey.
## Your Profile Summary:
- **Age:** {age}
- **Knowledge Level:** {knowledge_level}
- **Learning Goals:** {goals}
- **Interests:** {interests}
- **Available Study Time:** {study_time} hours per week
- **Preferred Learning Style:** {learning_style}
{format_learning_paths(learning_paths)}
{format_resources(resources)}
{format_project_ideas(project_ideas)}
## Next Steps:
1. Browse through the recommended learning paths and resources
2. Ask me any questions about the topics you're interested in
3. Request exercises, explanations, or code samples
4. Try one of the project ideas to apply your knowledge
I'm here to help you every step of the way! What would you like to explore first?
"""
return welcome_message
def chatbot_interface(session_id, user_message):
"""Main chatbot interface function"""
user_data = load_session(session_id)
if not user_data or not user_data.get('age'):
return "Please complete your profile first by going to the Profile tab."
response = chat_with_groq(user_message, session_id)
return response
def generate_recommendations(session_id):
"""Generate or refresh recommendations based on current profile"""
user_data = load_session(session_id)
if not user_data or not user_data.get('age'):
return "Please complete your profile first by going to the Profile tab."
# Generate fresh recommendations
learning_paths = recommend_learning_path(
user_data.get('age', ''),
user_data.get('goals', ''),
user_data.get('knowledge_level', ''),
user_data.get('interests', '')
)
resources = get_recommended_resources(
user_data.get('interests', ''),
user_data.get('knowledge_level', ''),
learning_paths
)
project_ideas = get_project_ideas(learning_paths)
# Save recommendations to session
user_data.update({
'recommended_paths': learning_paths,
'recommended_resources': resources,
'recommended_projects': project_ideas
})
save_session(session_id, user_data)
# Format recommendations
recommendations = f"""
# Your Personalized Learning Recommendations
{format_learning_paths(learning_paths)}
{format_resources(resources)}
{format_project_ideas(project_ideas)}
"""
return recommendations
def handle_quiz_request(session_id, topic, difficulty):
"""Handle quiz generation request"""
user_data = load_session(session_id)
if not user_data or not user_data.get('age'):
return "Please complete your profile first by going to the Profile tab."
quiz = generate_quiz(topic, difficulty)
return quiz
def handle_study_plan_request(session_id, topic, time_available):
"""Handle study plan generation request"""
user_data = load_session(session_id)
if not user_data or not user_data.get('age'):
return "Please complete your profile first by going to the Profile tab."
goals = user_data.get('goals', 'improving skills')
knowledge_level = user_data.get('knowledge_level', 'Beginner')
study_plan = create_study_plan(topic, time_available, goals, knowledge_level)
# Save the generated study plan to the session
if 'study_plans' not in user_data:
user_data['study_plans'] = {}
study_plan_id = f"{topic}_{time_available}_{datetime.now().strftime('%Y%m%d%H%M%S')}"
user_data['study_plans'][study_plan_id] = {
'topic': topic,
'time_available': time_available,
'plan': study_plan,
'created_at': datetime.now().isoformat()
}
save_session(session_id, user_data)
return study_plan
def add_generative_ai_info():
"""Return information about Generative AI"""
return """
## What is Generative AI?
Generative AI refers to artificial intelligence systems that can create new content, such as text, images, code, audio, video, or 3D models. Unlike traditional AI systems that are designed to recognize patterns or make predictions, generative AI creates original outputs based on the patterns it has learned during training.
### Key Concepts in Generative AI:
- **Large Language Models (LLMs)**: Text generation systems like GPT-4, LLaMA, Claude, etc.
- **Diffusion Models**: For image generation (DALL-E, Midjourney, Stable Diffusion)
- **Prompt Engineering**: The art of crafting inputs to get desired outputs
- **Fine-tuning**: Adapting pre-trained models for specific domains or tasks
- **RLHF (Reinforcement Learning from Human Feedback)**: Method for aligning AI with human preferences
Learning generative AI involves understanding these foundation models, how they work, and how to effectively use and customize them for various applications.
"""
def add_agentic_ai_info():
"""Return information about Agentic AI"""
return """
## What is Agentic AI?
Agentic AI refers to AI systems that can act autonomously to achieve specified goals. Unlike passive AI systems that respond only when prompted, agentic AI can take initiative, make decisions, use tools, and perform sequences of actions to accomplish tasks.
### Key Concepts in Agentic AI:
- **Planning & Decision Making**: AI systems that can formulate and execute plans
- **Tool Use**: AI that can leverage external tools and APIs
- **Autonomous Execution**: Systems that can work without constant human supervision
- **Multi-agent Systems**: Multiple AI agents collaborating or competing
- **Memory & Context Management**: How agents maintain state across interactions
Agentic AI represents an evolution from AI as a passive tool to AI as an active collaborator that can work independently while remaining aligned with human goals and values.
"""
def create_chatbot():
"""Create the Gradio interface for the chatbot"""
# Generate a random session ID for the user
session_id = str(uuid.uuid4())
# Define theme colors and styling
primary_color = "#4a6fa5"
secondary_color = "#6c757d"
success_color = "#28a745"
light_color = "#f8f9fa"
dark_color = "#343a40"
custom_css = f"""
:root {{
--primary-color: {primary_color};
--secondary-color: {secondary_color};
--success-color: {success_color};
--light-color: {light_color};
--dark-color: {dark_color};
}}
.gradio-container {{
background-color: var(--light-color);
font-family: 'Inter', 'Segoe UI', sans-serif;
}}
#title {{
font-size: 32px;
font-weight: bold;
text-align: center;
padding-top: 20px;
color: var(--primary-color);
margin-bottom: 0;
}}
#subtitle {{
font-size: 18px;
text-align: center;
margin-bottom: 20px;
color: var(--secondary-color);
}}
.card {{
background-color: white;
padding: 20px;
border-radius: 12px;
box-shadow: 0 4px 10px rgba(0,0,0,0.08);
margin-bottom: 20px;
}}
.tabs {{
margin-top: 20px;
}}
.gr-button-primary {{
background-color: var(--primary-color) !important;
}}
.gr-button-secondary {{
background-color: var(--secondary-color) !important;
}}
.gr-button-success {{
background-color: var(--success-color) !important;
}}
.footer {{
text-align: center;
margin-top: 30px;
padding: 10px;
font-size: 14px;
color: var(--secondary-color);
}}
.progress-module {{
padding: 10px;
margin: 5px 0;
border-radius: 5px;
background-color: #e9ecef;
}}
.progress-module.completed {{
background-color: #d4edda;
}}
.info-box {{
background-color: #e7f5fe;
border-left: 4px solid var(--primary-color);
padding: 15px;
margin: 15px 0;
border-radius: 4px;
}}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue")) as demo:
gr.HTML("<div id='title'>🎓 AI Teaching Assistant</div>")
gr.HTML("<div id='subtitle'>Your personalized learning companion for Python, Data Science & AI</div>")
# Tabs for different sections
with gr.Tabs(elem_classes=["tabs"]) as tabs:
# Profile Tab
with gr.Tab("Profile & Goals"):
with gr.Column(elem_classes=["card"]):
gr.HTML("<h3>Complete Your Learning Profile</h3>")
with gr.Row():
with gr.Column(scale=1):
age_input = gr.Textbox(
label="Age",
placeholder="e.g. 20",
lines=1
)
with gr.Column(scale=2):
knowledge_level_input = gr.Dropdown(
choices=["Beginner", "Intermediate", "Advanced", "Expert"],
label="Knowledge Level",
value="Beginner"
)
goals_input = gr.Textbox(
label="Learning Goals",
placeholder="e.g. I want to become a data scientist and work with machine learning models",
lines=2
)
interests_input = gr.Textbox(
label="Specific Interests",
placeholder="e.g. Python, data visualization, neural networks",
lines=2
)
with gr.Row():
with gr.Column(scale=1):
study_time_input = gr.Dropdown(
choices=["1-3", "4-6", "7-10", "10+"],
label="Hours Available Weekly",
value="4-6"
)
with gr.Column(scale=2):
learning_style_input = gr.Dropdown(
choices=["Visual", "Reading/Writing", "Hands-on Projects", "Video Tutorials", "Interactive Exercises", "Combination"],
label="Preferred Learning Style",
value="Combination"
)
profile_submit_btn = gr.Button("Save Profile & Generate Recommendations", variant="primary")
profile_output = gr.Markdown(label="Personalized Recommendations")
# Chat Tab
with gr.Tab("Learning Assistant"):
with gr.Row():
with gr.Column(elem_classes=["card"]):
chat_input = gr.Textbox(
label="Ask a Question",
placeholder="Ask anything about Python, Data Science, AI...",
lines=3
)
with gr.Row():
chat_submit_btn = gr.Button("Send Message", variant="primary")
chat_clear_btn = gr.Button("Clear Chat", variant="secondary")
chat_output = gr.Markdown(label="Assistant Response")
# Resources Tab
with gr.Tab("Resources & Recommendations"):
with gr.Column(elem_classes=["card"]):
gr.HTML("<h3>Your Learning Resources</h3>")
refresh_recommendations_btn = gr.Button("Refresh Recommendations", variant="primary")
recommendations_output = gr.Markdown(label="Personalized Recommendations")
# Practice Tab
with gr.Tab("Practice & Assessment"):
with gr.Column(elem_classes=["card"]):
gr.HTML("<h3>Generate a Quiz</h3>")
with gr.Row():
quiz_topic_input = gr.Textbox(
label="Quiz Topic",
placeholder="e.g. Python Lists",
lines=1
)
quiz_difficulty_input = gr.Dropdown(
choices=["Beginner", "Intermediate", "Advanced"],
label="Difficulty Level",
value="Beginner"
)
generate_quiz_btn = gr.Button("Generate Quiz", variant="primary")
quiz_output = gr.Markdown(label="Quiz")
# Study Plan Tab
with gr.Tab("Study Plan"):
with gr.Column(elem_classes=["card"]):
gr.HTML("<h3>Generate a Personalized Study Plan</h3>")
with gr.Row():
plan_topic_input = gr.Textbox(
label="Study Topic",
placeholder="e.g. Data Science",
lines=1
)
plan_time_input = gr.Dropdown(
choices=["1-3", "4-6", "7-10", "10+"],
label="Hours Available Weekly",
value="4-6"
)
generate_plan_btn = gr.Button("Generate Study Plan", variant="primary")
plan_output = gr.Markdown(label="Personalized Study Plan")
gr.HTML("""<div class="footer">
AI Teaching Assistant | Version 2.0 | © 2025 | Powered by Groq AI
</div>""")
# Event handlers
profile_submit_btn.click(
user_onboarding,
inputs=[
gr.State(session_id),
age_input,
goals_input,
knowledge_level_input,
interests_input,
study_time_input,
learning_style_input
],
outputs=profile_output
)
chat_submit_btn.click(
chatbot_interface,
inputs=[gr.State(session_id), chat_input],
outputs=chat_output
)
chat_clear_btn.click(
lambda: "",
inputs=[],
outputs=[chat_output, chat_input]
)
refresh_recommendations_btn.click(
generate_recommendations,
inputs=[gr.State(session_id)],
outputs=recommendations_output
)
generate_quiz_btn.click(
handle_quiz_request,
inputs=[gr.State(session_id), quiz_topic_input, quiz_difficulty_input],
outputs=quiz_output
)
generate_plan_btn.click(
handle_study_plan_request,
inputs=[gr.State(session_id), plan_topic_input, plan_time_input],
outputs=plan_output
)
return demo
# Run the chatbot
if __name__ == "__main__":
app = create_chatbot()
app.launch()