Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -240,28 +240,45 @@ LEARNING_RESOURCES = {
|
|
240 |
},
|
241 |
"Video Tutorials": {
|
242 |
"python_beginner": [
|
|
|
243 |
{"title": "CS50's Introduction to Programming with Python", "url": "https://cs50.harvard.edu/python/"},
|
|
|
244 |
{"title": "freeCodeCamp Python Course", "url": "https://www.freecodecamp.org/learn/scientific-computing-with-python/"}
|
245 |
],
|
246 |
"python_intermediate": [
|
|
|
|
|
|
|
247 |
{"title": "MIT OpenCourseWare: Python", "url": "https://ocw.mit.edu/courses/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/"}
|
248 |
],
|
249 |
"data_science_beginner": [
|
|
|
|
|
|
|
250 |
{"title": "freeCodeCamp Data Analysis Course", "url": "https://www.freecodecamp.org/learn/data-analysis-with-python/"}
|
251 |
],
|
252 |
"data_science_advanced": [
|
|
|
253 |
{"title": "Machine Learning Course by Andrew Ng", "url": "https://www.coursera.org/learn/machine-learning"},
|
254 |
-
{"title": "Deep Learning Specialization", "url": "https://www.deeplearning.ai/deep-learning-specialization/"}
|
|
|
255 |
],
|
256 |
"ai_specialization": [
|
257 |
-
{"title": "
|
|
|
|
|
|
|
258 |
],
|
259 |
"generative_ai": [
|
260 |
{"title": "Neural Networks: Zero to Hero", "url": "https://karpathy.ai/zero-to-hero.html"},
|
|
|
|
|
261 |
{"title": "Prompt Engineering for LLMs", "url": "https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/"}
|
262 |
],
|
263 |
"agentic_ai": [
|
264 |
{"title": "Building AI Agents with LangChain", "url": "https://www.youtube.com/watch?v=iw2Wcw7qPuE"},
|
|
|
|
|
265 |
{"title": "AutoGPT and Multi-Agent Systems", "url": "https://www.youtube.com/watch?v=4YaILFaUXTo"}
|
266 |
]
|
267 |
},
|
@@ -907,9 +924,9 @@ def format_learning_paths(paths):
|
|
907 |
|
908 |
result = "### Recommended Learning Paths\n\n"
|
909 |
for i, path in enumerate(paths, 1):
|
910 |
-
result += f"
|
911 |
result += f"{path['description']}\n\n"
|
912 |
-
result += "
|
913 |
for module in path['modules']:
|
914 |
result += f"- {module}\n"
|
915 |
result += "\n"
|
@@ -1004,7 +1021,7 @@ def generate_recommendations(session_id):
|
|
1004 |
|
1005 |
# Build the recommendation markdown
|
1006 |
markdown = f"## Your Personalized Learning Path: {learning_path['title']}\n\n"
|
1007 |
-
markdown += f"
|
1008 |
|
1009 |
markdown += "### Learning Modules\n"
|
1010 |
for i, module in enumerate(learning_path['modules'], 1):
|
@@ -1100,11 +1117,11 @@ def add_generative_ai_info():
|
|
1100 |
|
1101 |
### Key Concepts in Generative AI:
|
1102 |
|
1103 |
-
-
|
1104 |
-
-
|
1105 |
-
-
|
1106 |
-
-
|
1107 |
-
-
|
1108 |
|
1109 |
Learning generative AI involves understanding these foundation models, how they work, and how to effectively use and customize them for various applications.
|
1110 |
"""
|
@@ -1118,11 +1135,11 @@ def add_agentic_ai_info():
|
|
1118 |
|
1119 |
### Key Concepts in Agentic AI:
|
1120 |
|
1121 |
-
-
|
1122 |
-
-
|
1123 |
-
-
|
1124 |
-
-
|
1125 |
-
-
|
1126 |
|
1127 |
Agentic AI represents an evolution from AI as a passive tool to AI as an active collaborator that can work independently while remaining aligned with human goals and values.
|
1128 |
"""
|
@@ -1378,6 +1395,6 @@ def create_chatbot():
|
|
1378 |
return demo
|
1379 |
|
1380 |
# Run the chatbot
|
1381 |
-
if
|
1382 |
app = create_chatbot()
|
1383 |
app.launch()
|
|
|
240 |
},
|
241 |
"Video Tutorials": {
|
242 |
"python_beginner": [
|
243 |
+
{"title": "Python Full Course for Beginners", "url": "https://www.youtube.com/watch?v=_uQrJ0TkZlc"},
|
244 |
{"title": "CS50's Introduction to Programming with Python", "url": "https://cs50.harvard.edu/python/"},
|
245 |
+
{"title": "Python Tutorial - Python for Beginners", "url": "https://www.youtube.com/watch?v=_uQrJ0TkZlc"},
|
246 |
{"title": "freeCodeCamp Python Course", "url": "https://www.freecodecamp.org/learn/scientific-computing-with-python/"}
|
247 |
],
|
248 |
"python_intermediate": [
|
249 |
+
{"title": "Corey Schafer Python Tutorials", "url": "https://www.youtube.com/user/schafer5"},
|
250 |
+
{"title": "Advanced Python Features", "url": "https://www.youtube.com/playlist?list=PLP8GkvaIxJP0VAXF3USi9U4JnpxnHjT_"},
|
251 |
+
{"title": "Python OOP Tutorials", "url": "https://www.youtube.com/playlist?list=PLzMcBGfZo4-l1MqB1zoYfqzlj_HH-ZzXt"},
|
252 |
{"title": "MIT OpenCourseWare: Python", "url": "https://ocw.mit.edu/courses/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/"}
|
253 |
],
|
254 |
"data_science_beginner": [
|
255 |
+
{"title": "Python for Data Science Course", "url": "https://www.youtube.com/watch?v=LHBE6Q9XlzI"},
|
256 |
+
{"title": "Data Analysis with Python - Full Course", "url": "https://www.youtube.com/watch?v=r-uOLxNrNk8"},
|
257 |
+
{"title": "Statistics Fundamentals", "url": "https://www.youtube.com/playlist?list=PLblh5JKOoLUK0FLuzwntyYI10UQFUhsY9"},
|
258 |
{"title": "freeCodeCamp Data Analysis Course", "url": "https://www.freecodecamp.org/learn/data-analysis-with-python/"}
|
259 |
],
|
260 |
"data_science_advanced": [
|
261 |
+
{"title": "StatQuest: Machine Learning", "url": "https://www.youtube.com/playlist?list=PLblh5JKOoLUIcdlgu78MnlATeyx4cEVeR"},
|
262 |
{"title": "Machine Learning Course by Andrew Ng", "url": "https://www.coursera.org/learn/machine-learning"},
|
263 |
+
{"title": "Deep Learning Specialization", "url": "https://www.deeplearning.ai/deep-learning-specialization/"},
|
264 |
+
{"title": "Data Science Full Course", "url": "https://www.youtube.com/watch?v=ua-CiDNNj30"}
|
265 |
],
|
266 |
"ai_specialization": [
|
267 |
+
{"title": "Stanford CS231n: CNN for Visual Recognition", "url": "https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv"},
|
268 |
+
{"title": "Deep Learning Lectures by Lex Fridman", "url": "https://www.youtube.com/playlist?list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf"},
|
269 |
+
{"title": "MIT 6.S191: Introduction to Deep Learning", "url": "http://introtodeeplearning.com/"},
|
270 |
+
{"title": "Stanford CS224N: NLP with Deep Learning", "url": "https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z"}
|
271 |
],
|
272 |
"generative_ai": [
|
273 |
{"title": "Neural Networks: Zero to Hero", "url": "https://karpathy.ai/zero-to-hero.html"},
|
274 |
+
{"title": "LLM Bootcamp", "url": "https://www.youtube.com/watch?v=twHxmU9OxDU"},
|
275 |
+
{"title": "Diffusion Models Explained", "url": "https://www.youtube.com/watch?v=fbLgFrlTnGU"},
|
276 |
{"title": "Prompt Engineering for LLMs", "url": "https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/"}
|
277 |
],
|
278 |
"agentic_ai": [
|
279 |
{"title": "Building AI Agents with LangChain", "url": "https://www.youtube.com/watch?v=iw2Wcw7qPuE"},
|
280 |
+
{"title": "LLM Agents Tutorial", "url": "https://www.youtube.com/watch?v=RUzgloRlHIc"},
|
281 |
+
{"title": "Reinforcement Learning Course", "url": "https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ"},
|
282 |
{"title": "AutoGPT and Multi-Agent Systems", "url": "https://www.youtube.com/watch?v=4YaILFaUXTo"}
|
283 |
]
|
284 |
},
|
|
|
924 |
|
925 |
result = "### Recommended Learning Paths\n\n"
|
926 |
for i, path in enumerate(paths, 1):
|
927 |
+
result += f"{i}. {path['title']}\n"
|
928 |
result += f"{path['description']}\n\n"
|
929 |
+
result += "*Modules:*\n"
|
930 |
for module in path['modules']:
|
931 |
result += f"- {module}\n"
|
932 |
result += "\n"
|
|
|
1021 |
|
1022 |
# Build the recommendation markdown
|
1023 |
markdown = f"## Your Personalized Learning Path: {learning_path['title']}\n\n"
|
1024 |
+
markdown += f"{learning_path['description']}\n\n"
|
1025 |
|
1026 |
markdown += "### Learning Modules\n"
|
1027 |
for i, module in enumerate(learning_path['modules'], 1):
|
|
|
1117 |
|
1118 |
### Key Concepts in Generative AI:
|
1119 |
|
1120 |
+
- *Large Language Models (LLMs)*: Text generation systems like GPT-4, LLaMA, Claude, etc.
|
1121 |
+
- *Diffusion Models*: For image generation (DALL-E, Midjourney, Stable Diffusion)
|
1122 |
+
- *Prompt Engineering*: The art of crafting inputs to get desired outputs
|
1123 |
+
- *Fine-tuning*: Adapting pre-trained models for specific domains or tasks
|
1124 |
+
- *RLHF (Reinforcement Learning from Human Feedback)*: Method for aligning AI with human preferences
|
1125 |
|
1126 |
Learning generative AI involves understanding these foundation models, how they work, and how to effectively use and customize them for various applications.
|
1127 |
"""
|
|
|
1135 |
|
1136 |
### Key Concepts in Agentic AI:
|
1137 |
|
1138 |
+
- *Planning & Decision Making*: AI systems that can formulate and execute plans
|
1139 |
+
- *Tool Use*: AI that can leverage external tools and APIs
|
1140 |
+
- *Autonomous Execution*: Systems that can work without constant human supervision
|
1141 |
+
- *Multi-agent Systems*: Multiple AI agents collaborating or competing
|
1142 |
+
- *Memory & Context Management*: How agents maintain state across interactions
|
1143 |
|
1144 |
Agentic AI represents an evolution from AI as a passive tool to AI as an active collaborator that can work independently while remaining aligned with human goals and values.
|
1145 |
"""
|
|
|
1395 |
return demo
|
1396 |
|
1397 |
# Run the chatbot
|
1398 |
+
if _name_ == "_main_":
|
1399 |
app = create_chatbot()
|
1400 |
app.launch()
|