maria355 commited on
Commit
414a8e5
·
verified ·
1 Parent(s): 99ebc67

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -16
app.py CHANGED
@@ -240,28 +240,45 @@ LEARNING_RESOURCES = {
240
  },
241
  "Video Tutorials": {
242
  "python_beginner": [
 
243
  {"title": "CS50's Introduction to Programming with Python", "url": "https://cs50.harvard.edu/python/"},
 
244
  {"title": "freeCodeCamp Python Course", "url": "https://www.freecodecamp.org/learn/scientific-computing-with-python/"}
245
  ],
246
  "python_intermediate": [
 
 
 
247
  {"title": "MIT OpenCourseWare: Python", "url": "https://ocw.mit.edu/courses/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/"}
248
  ],
249
  "data_science_beginner": [
 
 
 
250
  {"title": "freeCodeCamp Data Analysis Course", "url": "https://www.freecodecamp.org/learn/data-analysis-with-python/"}
251
  ],
252
  "data_science_advanced": [
 
253
  {"title": "Machine Learning Course by Andrew Ng", "url": "https://www.coursera.org/learn/machine-learning"},
254
- {"title": "Deep Learning Specialization", "url": "https://www.deeplearning.ai/deep-learning-specialization/"}
 
255
  ],
256
  "ai_specialization": [
257
- {"title": "MIT 6.S191: Introduction to Deep Learning", "url": "http://introtodeeplearning.com/"}
 
 
 
258
  ],
259
  "generative_ai": [
260
  {"title": "Neural Networks: Zero to Hero", "url": "https://karpathy.ai/zero-to-hero.html"},
 
 
261
  {"title": "Prompt Engineering for LLMs", "url": "https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/"}
262
  ],
263
  "agentic_ai": [
264
  {"title": "Building AI Agents with LangChain", "url": "https://www.youtube.com/watch?v=iw2Wcw7qPuE"},
 
 
265
  {"title": "AutoGPT and Multi-Agent Systems", "url": "https://www.youtube.com/watch?v=4YaILFaUXTo"}
266
  ]
267
  },
@@ -907,9 +924,9 @@ def format_learning_paths(paths):
907
 
908
  result = "### Recommended Learning Paths\n\n"
909
  for i, path in enumerate(paths, 1):
910
- result += f"**{i}. {path['title']}**\n"
911
  result += f"{path['description']}\n\n"
912
- result += "**Modules:**\n"
913
  for module in path['modules']:
914
  result += f"- {module}\n"
915
  result += "\n"
@@ -1004,7 +1021,7 @@ def generate_recommendations(session_id):
1004
 
1005
  # Build the recommendation markdown
1006
  markdown = f"## Your Personalized Learning Path: {learning_path['title']}\n\n"
1007
- markdown += f"*{learning_path['description']}*\n\n"
1008
 
1009
  markdown += "### Learning Modules\n"
1010
  for i, module in enumerate(learning_path['modules'], 1):
@@ -1100,11 +1117,11 @@ def add_generative_ai_info():
1100
 
1101
  ### Key Concepts in Generative AI:
1102
 
1103
- - **Large Language Models (LLMs)**: Text generation systems like GPT-4, LLaMA, Claude, etc.
1104
- - **Diffusion Models**: For image generation (DALL-E, Midjourney, Stable Diffusion)
1105
- - **Prompt Engineering**: The art of crafting inputs to get desired outputs
1106
- - **Fine-tuning**: Adapting pre-trained models for specific domains or tasks
1107
- - **RLHF (Reinforcement Learning from Human Feedback)**: Method for aligning AI with human preferences
1108
 
1109
  Learning generative AI involves understanding these foundation models, how they work, and how to effectively use and customize them for various applications.
1110
  """
@@ -1118,11 +1135,11 @@ def add_agentic_ai_info():
1118
 
1119
  ### Key Concepts in Agentic AI:
1120
 
1121
- - **Planning & Decision Making**: AI systems that can formulate and execute plans
1122
- - **Tool Use**: AI that can leverage external tools and APIs
1123
- - **Autonomous Execution**: Systems that can work without constant human supervision
1124
- - **Multi-agent Systems**: Multiple AI agents collaborating or competing
1125
- - **Memory & Context Management**: How agents maintain state across interactions
1126
 
1127
  Agentic AI represents an evolution from AI as a passive tool to AI as an active collaborator that can work independently while remaining aligned with human goals and values.
1128
  """
@@ -1378,6 +1395,6 @@ def create_chatbot():
1378
  return demo
1379
 
1380
  # Run the chatbot
1381
- if __name__ == "__main__":
1382
  app = create_chatbot()
1383
  app.launch()
 
240
  },
241
  "Video Tutorials": {
242
  "python_beginner": [
243
+ {"title": "Python Full Course for Beginners", "url": "https://www.youtube.com/watch?v=_uQrJ0TkZlc"},
244
  {"title": "CS50's Introduction to Programming with Python", "url": "https://cs50.harvard.edu/python/"},
245
+ {"title": "Python Tutorial - Python for Beginners", "url": "https://www.youtube.com/watch?v=_uQrJ0TkZlc"},
246
  {"title": "freeCodeCamp Python Course", "url": "https://www.freecodecamp.org/learn/scientific-computing-with-python/"}
247
  ],
248
  "python_intermediate": [
249
+ {"title": "Corey Schafer Python Tutorials", "url": "https://www.youtube.com/user/schafer5"},
250
+ {"title": "Advanced Python Features", "url": "https://www.youtube.com/playlist?list=PLP8GkvaIxJP0VAXF3USi9U4JnpxnHjT_"},
251
+ {"title": "Python OOP Tutorials", "url": "https://www.youtube.com/playlist?list=PLzMcBGfZo4-l1MqB1zoYfqzlj_HH-ZzXt"},
252
  {"title": "MIT OpenCourseWare: Python", "url": "https://ocw.mit.edu/courses/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/"}
253
  ],
254
  "data_science_beginner": [
255
+ {"title": "Python for Data Science Course", "url": "https://www.youtube.com/watch?v=LHBE6Q9XlzI"},
256
+ {"title": "Data Analysis with Python - Full Course", "url": "https://www.youtube.com/watch?v=r-uOLxNrNk8"},
257
+ {"title": "Statistics Fundamentals", "url": "https://www.youtube.com/playlist?list=PLblh5JKOoLUK0FLuzwntyYI10UQFUhsY9"},
258
  {"title": "freeCodeCamp Data Analysis Course", "url": "https://www.freecodecamp.org/learn/data-analysis-with-python/"}
259
  ],
260
  "data_science_advanced": [
261
+ {"title": "StatQuest: Machine Learning", "url": "https://www.youtube.com/playlist?list=PLblh5JKOoLUIcdlgu78MnlATeyx4cEVeR"},
262
  {"title": "Machine Learning Course by Andrew Ng", "url": "https://www.coursera.org/learn/machine-learning"},
263
+ {"title": "Deep Learning Specialization", "url": "https://www.deeplearning.ai/deep-learning-specialization/"},
264
+ {"title": "Data Science Full Course", "url": "https://www.youtube.com/watch?v=ua-CiDNNj30"}
265
  ],
266
  "ai_specialization": [
267
+ {"title": "Stanford CS231n: CNN for Visual Recognition", "url": "https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv"},
268
+ {"title": "Deep Learning Lectures by Lex Fridman", "url": "https://www.youtube.com/playlist?list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf"},
269
+ {"title": "MIT 6.S191: Introduction to Deep Learning", "url": "http://introtodeeplearning.com/"},
270
+ {"title": "Stanford CS224N: NLP with Deep Learning", "url": "https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z"}
271
  ],
272
  "generative_ai": [
273
  {"title": "Neural Networks: Zero to Hero", "url": "https://karpathy.ai/zero-to-hero.html"},
274
+ {"title": "LLM Bootcamp", "url": "https://www.youtube.com/watch?v=twHxmU9OxDU"},
275
+ {"title": "Diffusion Models Explained", "url": "https://www.youtube.com/watch?v=fbLgFrlTnGU"},
276
  {"title": "Prompt Engineering for LLMs", "url": "https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/"}
277
  ],
278
  "agentic_ai": [
279
  {"title": "Building AI Agents with LangChain", "url": "https://www.youtube.com/watch?v=iw2Wcw7qPuE"},
280
+ {"title": "LLM Agents Tutorial", "url": "https://www.youtube.com/watch?v=RUzgloRlHIc"},
281
+ {"title": "Reinforcement Learning Course", "url": "https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ"},
282
  {"title": "AutoGPT and Multi-Agent Systems", "url": "https://www.youtube.com/watch?v=4YaILFaUXTo"}
283
  ]
284
  },
 
924
 
925
  result = "### Recommended Learning Paths\n\n"
926
  for i, path in enumerate(paths, 1):
927
+ result += f"{i}. {path['title']}\n"
928
  result += f"{path['description']}\n\n"
929
+ result += "*Modules:*\n"
930
  for module in path['modules']:
931
  result += f"- {module}\n"
932
  result += "\n"
 
1021
 
1022
  # Build the recommendation markdown
1023
  markdown = f"## Your Personalized Learning Path: {learning_path['title']}\n\n"
1024
+ markdown += f"{learning_path['description']}\n\n"
1025
 
1026
  markdown += "### Learning Modules\n"
1027
  for i, module in enumerate(learning_path['modules'], 1):
 
1117
 
1118
  ### Key Concepts in Generative AI:
1119
 
1120
+ - *Large Language Models (LLMs)*: Text generation systems like GPT-4, LLaMA, Claude, etc.
1121
+ - *Diffusion Models*: For image generation (DALL-E, Midjourney, Stable Diffusion)
1122
+ - *Prompt Engineering*: The art of crafting inputs to get desired outputs
1123
+ - *Fine-tuning*: Adapting pre-trained models for specific domains or tasks
1124
+ - *RLHF (Reinforcement Learning from Human Feedback)*: Method for aligning AI with human preferences
1125
 
1126
  Learning generative AI involves understanding these foundation models, how they work, and how to effectively use and customize them for various applications.
1127
  """
 
1135
 
1136
  ### Key Concepts in Agentic AI:
1137
 
1138
+ - *Planning & Decision Making*: AI systems that can formulate and execute plans
1139
+ - *Tool Use*: AI that can leverage external tools and APIs
1140
+ - *Autonomous Execution*: Systems that can work without constant human supervision
1141
+ - *Multi-agent Systems*: Multiple AI agents collaborating or competing
1142
+ - *Memory & Context Management*: How agents maintain state across interactions
1143
 
1144
  Agentic AI represents an evolution from AI as a passive tool to AI as an active collaborator that can work independently while remaining aligned with human goals and values.
1145
  """
 
1395
  return demo
1396
 
1397
  # Run the chatbot
1398
+ if _name_ == "_main_":
1399
  app = create_chatbot()
1400
  app.launch()