marianeft commited on
Commit
93aa575
·
verified ·
1 Parent(s): 3396a47

Updated app.py

Browse files
Files changed (1) hide show
  1. app.py +123 -0
app.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.preprocessing import LabelEncoder, StandardScaler
5
+ from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
6
+ from sklearn.feature_extraction.text import TfidfVectorizer
7
+ from sklearn.metrics import confusion_matrix, classification_report
8
+ import matplotlib.pyplot as plt
9
+ import seaborn as sns
10
+ import re
11
+
12
+ st.title("Expense Category Prediction")
13
+
14
+ # Load data from CSV
15
+ df = pd.read_csv("financial_data.csv", sep='\s\s+', engine='python')
16
+
17
+ # Data Preprocessing
18
+ def preprocess_data(df):
19
+
20
+ # Clean the date column
21
+ df['Date'] = df['Date'].str.extract(r'(\d{4}-\d{2}-\d{2})')
22
+
23
+ # Forward fill missing dates
24
+ df['Date'] = df['Date'].ffill()
25
+
26
+ # Remove rows with missing dates
27
+ df.dropna(subset=['Date'], inplace=True)
28
+
29
+ # Convert 'Date' to datetime objects
30
+ df['Date'] = pd.to_datetime(df['Date'])
31
+
32
+ # Fill missing values in 'Expense_Category' and 'Description' with 'Unknown'
33
+ df['Expense_Category'] = df['Expense_Category'].fillna('Unknown')
34
+ df['Description'] = df['Description'].fillna('Unknown')
35
+
36
+ # Convert 'Amount' to numeric, fill missing with 0
37
+ df['Amount'] = pd.to_numeric(df['Amount'], errors='coerce').fillna(0)
38
+
39
+ # Date Feature Engineering
40
+ df['Month'] = df['Date'].dt.month
41
+ df['DayOfWeek'] = df['Date'].dt.dayofweek
42
+
43
+ # Description Text Processing
44
+ def clean_text(text):
45
+ text = text.lower()
46
+ text = re.sub(r'[^a-zA-Z0-9\s]', '', text)
47
+ return text
48
+
49
+ df['Description_Cleaned'] = df['Description'].apply(clean_text)
50
+
51
+ # TF-IDF Vectorization
52
+ tfidf_vectorizer = TfidfVectorizer(max_features=100) # Limiting features for simplicity
53
+ tfidf_features = tfidf_vectorizer.fit_transform(df['Description_Cleaned']).toarray()
54
+ tfidf_df = pd.DataFrame(tfidf_features, index=df.index)
55
+
56
+ # Combine Features
57
+ features_df = pd.concat([df[['Amount', 'Month', 'DayOfWeek']], tfidf_df], axis=1)
58
+
59
+ # Encode the target variable
60
+ label_encoder = LabelEncoder()
61
+ df['Expense_Category_Encoded'] = label_encoder.fit_transform(df['Expense_Category'])
62
+
63
+ # Select features and target
64
+ X = features_df
65
+ y = df['Expense_Category_Encoded']
66
+
67
+ # Scale the features
68
+ scaler = StandardScaler()
69
+ X = scaler.fit_transform(X)
70
+
71
+ return X, y, label_encoder, df # Return the original dataframe
72
+
73
+ X, y, label_encoder, df = preprocess_data(df.copy())
74
+
75
+ # Split data
76
+ X_train, X_test, y_train, y_test = train_test_split(
77
+ X, y, test_size=0.2, random_state=42)
78
+
79
+ # --- Models ---
80
+ models = {
81
+ "Random Forest": RandomForestClassifier(random_state=42),
82
+ "Gradient Boosting": GradientBoostingClassifier(random_state=42)
83
+ }
84
+
85
+ # --- Streamlit Tabs ---
86
+ tabs = st.tabs(list(models.keys()))
87
+
88
+ for tab, model_name in zip(tabs, models.keys()):
89
+ with tab:
90
+ st.header(model_name)
91
+ model = models[model_name]
92
+ model.fit(X_train, y_train)
93
+ y_pred = model.predict(X_test)
94
+
95
+ # --- Confusion Matrix ---
96
+ st.subheader("Confusion Matrix")
97
+ cm = confusion_matrix(y_test, y_pred)
98
+ plt.figure(figsize=(8, 6))
99
+ sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
100
+ plt.xlabel("Predicted")
101
+ plt.ylabel("Actual")
102
+ st.pyplot(plt.gcf())
103
+
104
+ # --- Classification Report ---
105
+ st.subheader("Classification Report")
106
+ cr = classification_report(y_test, y_pred,
107
+ target_names=label_encoder.inverse_transform(
108
+ df['Expense_Category_Encoded'].unique()),
109
+ zero_division=0) # Get original category names
110
+ st.text(cr)
111
+
112
+ # --- Remarks ---
113
+ st.subheader("Remarks")
114
+ st.write("Model Performance Analysis:")
115
+ st.write(
116
+ f"The {model_name} model's performance in predicting Expense Categories is shown above.")
117
+ st.write("Key Metrics:")
118
+ st.write(
119
+ "- The model uses a combination of expense amount, time-based features, and text descriptions to predict the expense category."
120
+ )
121
+ st.write(
122
+ "- The classification report provides insights into the model's precision, recall, and F1-score for each expense category."
123
+ )