File size: 21,515 Bytes
8900f0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
<<<<<<< HEAD
# app.py

import streamlit as st
import pandas as pd
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F # Added F for log_softmax in inference
import torchvision.transforms as transforms
import os
import traceback # For detailed error logging

# Import custom modules
from config import CHARS, BLANK_TOKEN, IMG_HEIGHT, TRAIN_CSV_PATH, TEST_CSV_PATH, \
                    TRAIN_IMAGES_DIR, TEST_IMAGES_DIR, MODEL_SAVE_PATH, NUM_CLASSES, NUM_EPOCHS, BATCH_SIZE
from data_handler_ocr import CharIndexer, OCRDataset
from model_ocr import CRNN, train_ocr_model, save_ocr_model, load_ocr_model, ctc_greedy_decode
from utils_ocr import preprocess_user_image_for_ocr

# --- Streamlit App Setup ---
st.set_page_config(page_title="Handwritten Name Recognizer", layout="centered")

st.title("πŸ“ Handwritten Name Recognition (OCR)")
st.markdown("""
    This application uses a Convolutional Recurrent Neural Network (CRNN) to perform
    Optical Character Recognition (OCR) on handwritten names. You can upload an image
    of a handwritten name for prediction or train a new model using the provided dataset.

    **Note:** Training a robust OCR model can be time-consuming.
""")

# --- Initialize CharIndexer ---
# The CHARS variable should contain all possible characters your model can recognize.
# Make sure it's comprehensive based on your dataset.
char_indexer = CharIndexer(CHARS, BLANK_TOKEN)
# For robustness, it's best to always use char_indexer.num_classes
# If NUM_CLASSES from config is used to initialize CRNN, ensure it matches char_indexer.num_classes

# --- Model Loading / Initialization ---
@st.cache_resource # Cache the model to prevent reloading on every rerun
def get_and_load_ocr_model_cached(num_classes, model_path):
    """
    Initializes the OCR model and attempts to load a pre-trained model.
    If no pre-trained model exists, a new model instance is returned.
    """
    model_instance = CRNN(num_classes=num_classes, cnn_output_channels=512, rnn_hidden_size=256, rnn_num_layers=2)
    
    if os.path.exists(model_path):
        st.sidebar.info("Loading pre-trained OCR model...")
        try:
            # Load model to CPU first, then move to device
            model_instance.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
            st.sidebar.success("OCR model loaded successfully!")
        except Exception as e:
            st.sidebar.error(f"Error loading model: {e}. A new model will be initialized.")
            # If loading fails, re-initialize an untrained model
            model_instance = CRNN(num_classes=num_classes, cnn_output_channels=512, rnn_hidden_size=256, rnn_num_layers=2)
    else:
        st.sidebar.warning("No pre-trained OCR model found. Please train a model using the sidebar option.")
    
    return model_instance

# Get the model instance
ocr_model = get_and_load_ocr_model_cached(char_indexer.num_classes, MODEL_SAVE_PATH)
# Determine the device (GPU if available, else CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ocr_model.to(device)
ocr_model.eval() # Set model to evaluation mode for inference by default

# --- Sidebar for Model Training ---
st.sidebar.header("Model Training (Optional)")
st.sidebar.markdown("If you want to train a new model or no model is found:")

# Initialize Streamlit widgets outside the button block
training_progress_bar = st.sidebar.empty() # Placeholder for progress bar
status_text = st.sidebar.empty()            # Placeholder for status messages

if st.sidebar.button("πŸ“Š Train New OCR Model"):
    # Clear previous messages/widgets if button is clicked again
    training_progress_bar.empty()
    status_text.empty()

    # Check for existence of CSVs and image directories
    if not os.path.exists(TRAIN_CSV_PATH) or not os.path.exists(TEST_CSV_PATH) or \
       not os.path.isdir(TRAIN_IMAGES_DIR) or not os.path.isdir(TEST_IMAGES_DIR):
        status_text.error(f"""Dataset files or image directories not found.
        Please ensure '{TRAIN_CSV_PATH}', '{TEST_CSV_PATH}', and directories '{TRAIN_IMAGES_DIR}'
        and '{TEST_IMAGES_DIR}' exist. Refer to your project structure.""")
    else:
        status_text.write(f"Training a new CRNN model for {NUM_EPOCHS} epochs. This will take significant time...")
        
        training_progress_bar_instance = training_progress_bar.progress(0.0, text="Training in progress. Please wait.")

        try:
            train_df = pd.read_csv(TRAIN_CSV_PATH, delimiter=';', names=['FILENAME', 'IDENTITY'], header=None)
            test_df = pd.read_csv(TEST_CSV_PATH, delimiter=';', names=['FILENAME', 'IDENTITY'], header=None)

            # Define standard image transforms for consistency
            train_transform = transforms.Compose([
                transforms.Resize((IMG_HEIGHT, 100)), # Resize to fixed height, width will be 100 (adjust as needed for variable width)
                transforms.ToTensor(), # Converts PIL Image to PyTorch Tensor (H, W) -> (C, H, W), normalizes to [0,1]
            ])
            test_transform = transforms.Compose([
                transforms.Resize((IMG_HEIGHT, 100)), # Same transformation as train
                transforms.ToTensor(),
            ])

            # Create dataset instances
            train_dataset = OCRDataset(dataframe=train_df, char_indexer=char_indexer, image_dir=TRAIN_IMAGES_DIR, transform=train_transform)
            test_dataset = OCRDataset(dataframe=test_df, char_indexer=char_indexer, image_dir=TEST_IMAGES_DIR, transform=test_transform)

            # Create DataLoader instances
            train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0) # num_workers=0 for Windows
            test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)

            # Train the model, passing the progress callback
            trained_ocr_model, training_history = train_ocr_model(
                ocr_model, # Pass the initialized model instance
                train_loader,
                test_loader,
                char_indexer, # Pass char_indexer for CER calculation
                epochs=NUM_EPOCHS,
                device=device,
                progress_callback=training_progress_bar_instance.progress # Pass the instance's progress method
            )

            # Ensure the directory for saving the model exists
            os.makedirs(os.path.dirname(MODEL_SAVE_PATH), exist_ok=True)
            save_ocr_model(trained_ocr_model, MODEL_SAVE_PATH)
            status_text.success(f"Model training complete and saved to `{MODEL_SAVE_PATH}`!")

            # Display training history chart
            st.sidebar.subheader("Training History Plots")

            history_df = pd.DataFrame({
                'Epoch': range(1, len(training_history['train_loss']) + 1),
                'Train Loss': training_history['train_loss'],
                'Test Loss': training_history['test_loss'],
                'Test CER (%)': [cer * 100 for cer in training_history['test_cer']], # Convert CER to percentage for display
                'Test Exact Match Accuracy (%)': [acc * 100 for acc in training_history['test_exact_match_accuracy']] # Convert to percentage
            })

            # Plot 1: Training and Test Loss
            st.sidebar.markdown("**Loss over Epochs**")
            st.sidebar.line_chart(
                history_df.set_index('Epoch')[['Train Loss', 'Test Loss']]
            )
            st.sidebar.caption("Lower loss indicates better model performance.")

            # Plot 2: Character Error Rate (CER)
            st.sidebar.markdown("**Character Error Rate (CER) over Epochs**")
            st.sidebar.line_chart(
                history_df.set_index('Epoch')[['Test CER (%)']]
            )
            st.sidebar.caption("Lower CER indicates fewer character errors (0% is perfect).")

            # Plot 3: Exact Match Accuracy
            st.sidebar.markdown("**Exact Match Accuracy over Epochs**")
            st.sidebar.line_chart(
                history_df.set_index('Epoch')[['Test Exact Match Accuracy (%)']]
            )
            st.sidebar.caption("Higher exact match accuracy indicates more perfectly recognized names.")

            # Update the global model instance to the newly trained one for immediate inference
            ocr_model = trained_ocr_model
            ocr_model.eval()

        except Exception as e:
            status_text.error(f"An error occurred during training: {e}")
            st.sidebar.text(traceback.format_exc()) # Show full traceback for debugging

# --- Main Content: Name Prediction ---
st.header("Predict Your Handwritten Name")
st.markdown("Upload a clear image of a single handwritten name or word.")

uploaded_file = st.file_uploader("πŸ–ΌοΈ Choose an image...", type=["png", "jpg", "jpeg"])

if uploaded_file is not None:
    try:
        # Open the uploaded image
        image_pil = Image.open(uploaded_file).convert('L') # Ensure grayscale
        st.image(image_pil, caption="Uploaded Image", use_column_width=True)
        st.write("---")
        st.write("Processing and Recognizing...")

        # Preprocess the image for the model using utils_ocr function
        processed_image_tensor = preprocess_user_image_for_ocr(image_pil, IMG_HEIGHT).to(device)

        # Make prediction
        ocr_model.eval() # Ensure model is in evaluation mode
        with torch.no_grad(): # Disable gradient calculation for inference
            output = ocr_model(processed_image_tensor) # (sequence_length, batch_size, num_classes)
            
            # ctc_greedy_decode expects (sequence_length, batch_size, num_classes)
            # It returns a list of strings, so get the first element for single image inference.
            predicted_texts = ctc_greedy_decode(output, char_indexer)
            predicted_text = predicted_texts[0] # Get the first (and only) prediction

        st.success(f"Recognized Text: **{predicted_text}**")

    except Exception as e:
        st.error(f"Error processing image or recognizing text: {e}")
        st.info("πŸ’‘ **Tips for best results:**\n"
                "- Ensure the handwritten text is clear and on a clean background.\n"
                "- Only include one name/word per image.\n"
                "- The model is trained on specific characters. Unusual symbols might not be recognized.")
        st.text(traceback.format_exc())

st.markdown("""
    ---
    *Built using Streamlit, PyTorch, OpenCV, and EditDistance Β©2025 by MFT*
=======
# app.py



import streamlit as st

import pandas as pd

import numpy as np

from PIL import Image

import torch

import torch.nn.functional as F # Added F for log_softmax in inference

import torchvision.transforms as transforms

import os

import traceback # For detailed error logging



# Import custom modules

from config import CHARS, BLANK_TOKEN, IMG_HEIGHT, TRAIN_CSV_PATH, TEST_CSV_PATH, \

                    TRAIN_IMAGES_DIR, TEST_IMAGES_DIR, MODEL_SAVE_PATH, NUM_CLASSES, NUM_EPOCHS, BATCH_SIZE

from data_handler_ocr import CharIndexer, OCRDataset

from model_ocr import CRNN, train_ocr_model, save_ocr_model, load_ocr_model, ctc_greedy_decode

from utils_ocr import preprocess_user_image_for_ocr



# --- Streamlit App Setup ---

st.set_page_config(page_title="Handwritten Name Recognizer", layout="centered")



st.title("πŸ“ Handwritten Name Recognition (OCR)")

st.markdown("""
    This application uses a Convolutional Recurrent Neural Network (CRNN) to perform
    Optical Character Recognition (OCR) on handwritten names. You can upload an image
    of a handwritten name for prediction or train a new model using the provided dataset.

    **Note:** Training a robust OCR model can be time-consuming.
""")



# --- Initialize CharIndexer ---

# The CHARS variable should contain all possible characters your model can recognize.

# Make sure it's comprehensive based on your dataset.

char_indexer = CharIndexer(CHARS, BLANK_TOKEN)

# For robustness, it's best to always use char_indexer.num_classes

# If NUM_CLASSES from config is used to initialize CRNN, ensure it matches char_indexer.num_classes



# --- Model Loading / Initialization ---

@st.cache_resource # Cache the model to prevent reloading on every rerun

def get_and_load_ocr_model_cached(num_classes, model_path):

    """
    Initializes the OCR model and attempts to load a pre-trained model.
    If no pre-trained model exists, a new model instance is returned.
    """

    model_instance = CRNN(num_classes=num_classes, cnn_output_channels=512, rnn_hidden_size=256, rnn_num_layers=2)

    

    if os.path.exists(model_path):

        st.sidebar.info("Loading pre-trained OCR model...")

        try:

            # Load model to CPU first, then move to device

            model_instance.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))

            st.sidebar.success("OCR model loaded successfully!")

        except Exception as e:

            st.sidebar.error(f"Error loading model: {e}. A new model will be initialized.")

            # If loading fails, re-initialize an untrained model

            model_instance = CRNN(num_classes=num_classes, cnn_output_channels=512, rnn_hidden_size=256, rnn_num_layers=2)

    else:

        st.sidebar.warning("No pre-trained OCR model found. Please train a model using the sidebar option.")

    

    return model_instance



# Get the model instance

ocr_model = get_and_load_ocr_model_cached(char_indexer.num_classes, MODEL_SAVE_PATH)

# Determine the device (GPU if available, else CPU)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

ocr_model.to(device)

ocr_model.eval() # Set model to evaluation mode for inference by default



# --- Sidebar for Model Training ---

st.sidebar.header("Model Training (Optional)")

st.sidebar.markdown("If you want to train a new model or no model is found:")



# Initialize Streamlit widgets outside the button block

training_progress_bar = st.sidebar.empty() # Placeholder for progress bar

status_text = st.sidebar.empty()            # Placeholder for status messages



if st.sidebar.button("πŸ“Š Train New OCR Model"):

    # Clear previous messages/widgets if button is clicked again

    training_progress_bar.empty()

    status_text.empty()



    # Check for existence of CSVs and image directories

    if not os.path.exists(TRAIN_CSV_PATH) or not os.path.exists(TEST_CSV_PATH) or \

       not os.path.isdir(TRAIN_IMAGES_DIR) or not os.path.isdir(TEST_IMAGES_DIR):

        status_text.error(f"""Dataset files or image directories not found.
        Please ensure '{TRAIN_CSV_PATH}', '{TEST_CSV_PATH}', and directories '{TRAIN_IMAGES_DIR}'
        and '{TEST_IMAGES_DIR}' exist. Refer to your project structure.""")

    else:

        status_text.write(f"Training a new CRNN model for {NUM_EPOCHS} epochs. This will take significant time...")

        

        training_progress_bar_instance = training_progress_bar.progress(0.0, text="Training in progress. Please wait.")



        try:

            train_df = pd.read_csv(TRAIN_CSV_PATH, delimiter=';', names=['FILENAME', 'IDENTITY'], header=None)

            test_df = pd.read_csv(TEST_CSV_PATH, delimiter=';', names=['FILENAME', 'IDENTITY'], header=None)



            # Define standard image transforms for consistency

            train_transform = transforms.Compose([

                transforms.Resize((IMG_HEIGHT, 100)), # Resize to fixed height, width will be 100 (adjust as needed for variable width)

                transforms.ToTensor(), # Converts PIL Image to PyTorch Tensor (H, W) -> (C, H, W), normalizes to [0,1]

            ])

            test_transform = transforms.Compose([

                transforms.Resize((IMG_HEIGHT, 100)), # Same transformation as train

                transforms.ToTensor(),

            ])



            # Create dataset instances

            train_dataset = OCRDataset(dataframe=train_df, char_indexer=char_indexer, image_dir=TRAIN_IMAGES_DIR, transform=train_transform)

            test_dataset = OCRDataset(dataframe=test_df, char_indexer=char_indexer, image_dir=TEST_IMAGES_DIR, transform=test_transform)



            # Create DataLoader instances

            train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0) # num_workers=0 for Windows

            test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)



            # Train the model, passing the progress callback

            trained_ocr_model, training_history = train_ocr_model(

                ocr_model, # Pass the initialized model instance

                train_loader,

                test_loader,

                char_indexer, # Pass char_indexer for CER calculation

                epochs=NUM_EPOCHS,

                device=device,

                progress_callback=training_progress_bar_instance.progress # Pass the instance's progress method

            )



            # Ensure the directory for saving the model exists

            os.makedirs(os.path.dirname(MODEL_SAVE_PATH), exist_ok=True)

            save_ocr_model(trained_ocr_model, MODEL_SAVE_PATH)

            status_text.success(f"Model training complete and saved to `{MODEL_SAVE_PATH}`!")



            # Display training history chart

            st.sidebar.subheader("Training History Plots")



            history_df = pd.DataFrame({

                'Epoch': range(1, len(training_history['train_loss']) + 1),

                'Train Loss': training_history['train_loss'],

                'Test Loss': training_history['test_loss'],

                'Test CER (%)': [cer * 100 for cer in training_history['test_cer']], # Convert CER to percentage for display

                'Test Exact Match Accuracy (%)': [acc * 100 for acc in training_history['test_exact_match_accuracy']] # Convert to percentage

            })



            # Plot 1: Training and Test Loss

            st.sidebar.markdown("**Loss over Epochs**")

            st.sidebar.line_chart(

                history_df.set_index('Epoch')[['Train Loss', 'Test Loss']]

            )

            st.sidebar.caption("Lower loss indicates better model performance.")



            # Plot 2: Character Error Rate (CER)

            st.sidebar.markdown("**Character Error Rate (CER) over Epochs**")

            st.sidebar.line_chart(

                history_df.set_index('Epoch')[['Test CER (%)']]

            )

            st.sidebar.caption("Lower CER indicates fewer character errors (0% is perfect).")



            # Plot 3: Exact Match Accuracy

            st.sidebar.markdown("**Exact Match Accuracy over Epochs**")

            st.sidebar.line_chart(

                history_df.set_index('Epoch')[['Test Exact Match Accuracy (%)']]

            )

            st.sidebar.caption("Higher exact match accuracy indicates more perfectly recognized names.")



            # Update the global model instance to the newly trained one for immediate inference

            ocr_model = trained_ocr_model

            ocr_model.eval()



        except Exception as e:

            status_text.error(f"An error occurred during training: {e}")

            st.sidebar.text(traceback.format_exc()) # Show full traceback for debugging



# --- Main Content: Name Prediction ---

st.header("Predict Your Handwritten Name")

st.markdown("Upload a clear image of a single handwritten name or word.")



uploaded_file = st.file_uploader("πŸ–ΌοΈ Choose an image...", type=["png", "jpg", "jpeg"])



if uploaded_file is not None:

    try:

        # Open the uploaded image

        image_pil = Image.open(uploaded_file).convert('L') # Ensure grayscale

        st.image(image_pil, caption="Uploaded Image", use_column_width=True)

        st.write("---")

        st.write("Processing and Recognizing...")



        # Preprocess the image for the model using utils_ocr function

        processed_image_tensor = preprocess_user_image_for_ocr(image_pil, IMG_HEIGHT).to(device)



        # Make prediction

        ocr_model.eval() # Ensure model is in evaluation mode

        with torch.no_grad(): # Disable gradient calculation for inference

            output = ocr_model(processed_image_tensor) # (sequence_length, batch_size, num_classes)

            

            # ctc_greedy_decode expects (sequence_length, batch_size, num_classes)

            # It returns a list of strings, so get the first element for single image inference.

            predicted_texts = ctc_greedy_decode(output, char_indexer)

            predicted_text = predicted_texts[0] # Get the first (and only) prediction



        st.success(f"Recognized Text: **{predicted_text}**")



    except Exception as e:

        st.error(f"Error processing image or recognizing text: {e}")

        st.info("πŸ’‘ **Tips for best results:**\n"

                "- Ensure the handwritten text is clear and on a clean background.\n"

                "- Only include one name/word per image.\n"

                "- The model is trained on specific characters. Unusual symbols might not be recognized.")

        st.text(traceback.format_exc())



st.markdown("""
    ---
    *Built using Streamlit, PyTorch, OpenCV, and EditDistance Β©2025 by MFT*
>>>>>>> ee59e5b21399d8b323cff452a961ea2fd6c65308
    """)