File size: 13,116 Bytes
15dba6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# model_ocr.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader 
from tqdm import tqdm
from sklearn.metrics import accuracy_score
import editdistance

# Import config and char_indexer
from config import IMG_HEIGHT, NUM_CLASSES, BLANK_TOKEN 
from data_handler_ocr import CharIndexer 
from utils_ocr import binarize_image, resize_image_for_ocr, normalize_image_for_model


class CNN_Backbone(nn.Module):
    """

    CNN feature extractor for OCR. Designed to produce features suitable for RNN.

    Output feature map should have height 1 after the final pooling/reduction.

    """
    def __init__(self, input_channels=1, output_channels=512):
        super(CNN_Backbone, self).__init__()
        self.cnn = nn.Sequential(
            # First block
            nn.Conv2d(input_channels, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True),
            nn.MaxPool2d(kernel_size=2, stride=2), # H: 32 -> 16, W: W_in -> W_in/2

            # Second block
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True),
            nn.MaxPool2d(kernel_size=2, stride=2), # H: 16 -> 8, W: W_in/2 -> W_in/4

            # Third block (with two conv layers)
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True),
            # This MaxPool2d effectively brings height from 8 to 4, with a small width adjustment due to padding
            nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1)), # H: 8 -> 4, W: (W/4) -> (W/4 + 1) (approx)

            # Fourth block
            nn.Conv2d(256, output_channels, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True),
            # This AdaptiveAvgPool2d makes sure the height dimension becomes 1
            # while preserving the width. This is crucial for RNN input.
            nn.AdaptiveAvgPool2d((1, None)) # Output height 1, preserve width
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (N, C, H, W) e.g., (B, 1, 32, W_img)
        
        # Pass through the CNN layers
        conv_features = self.cnn(x) # Output: (N, cnn_out_channels, 1, W_prime)

        # Squeeze the height dimension (which is 1)
        # This transforms (N, C_out, 1, W_prime) to (N, C_out, W_prime)
        conv_features = conv_features.squeeze(2) 
        
        # Permute for RNN input: (sequence_length, batch_size, input_size)
        # This transforms (N, C_out, W_prime) to (W_prime, N, C_out)
        conv_features = conv_features.permute(2, 0, 1) 

        # Return the CNN features, ready for the RNN layer in CRNN
        return conv_features

class BidirectionalLSTM(nn.Module):
    """Bidirectional LSTM layer for sequence modeling."""
    def __init__(self, input_size: int, hidden_size: int, num_layers: int, dropout: float = 0.5):
        super(BidirectionalLSTM, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers,
                            bidirectional=True, dropout=dropout, batch_first=False)
        # batch_first=False expects input as (sequence_length, batch_size, input_size)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        output, _ = self.lstm(x) # [0] returns the output, [1] returns (h_n, c_n)
        return output

class CRNN(nn.Module):
    """

    Convolutional Recurrent Neural Network for OCR.

    Combines CNN for feature extraction, LSTMs for sequence modeling,

    and a final linear layer for character prediction.

    """
    def __init__(self, num_classes: int, cnn_output_channels: int = 512,

                 rnn_hidden_size: int = 256, rnn_num_layers: int = 2): # Corrected parameter name
        super(CRNN, self).__init__()
        self.cnn = CNN_Backbone(output_channels=cnn_output_channels)
        # Input to LSTM is the number of channels from the CNN output
        self.rnn = BidirectionalLSTM(cnn_output_channels, rnn_hidden_size, rnn_num_layers) # Corrected usage
        # Output of bidirectional LSTM is hidden_size * 2
        self.fc = nn.Linear(rnn_hidden_size * 2, num_classes) # Final linear layer for classes

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (N, C, H, W) e.g., (B, 1, 32, W_img)
        
        # 1. Pass through the CNN to extract features
        conv_features = self.cnn(x) # Output: (W_prime, N, C_out) after permute in CNN_Backbone

        # 2. Pass CNN features through the RNN (LSTM)
        rnn_features = self.rnn(conv_features) # Output: (W_prime, N, rnn_hidden_size * 2)

        # 3. Pass RNN features through the final fully connected layer
        # Apply the linear layer to each time step independently
        # output will be (W_prime, N, num_classes)
        output = self.fc(rnn_features) 
        
        return output


# --- Decoding Function ---
def ctc_greedy_decode(output: torch.Tensor, char_indexer: CharIndexer) -> list[str]:
    """

    Performs greedy decoding on the CTC output.

    output: (sequence_length, batch_size, num_classes) - raw logits

    """
    # Apply log_softmax to get probabilities for argmax
    log_probs = F.log_softmax(output, dim=2)
    
    # Permute to (batch_size, sequence_length, num_classes) for argmax along class dim
    predicted_indices = torch.argmax(log_probs.permute(1, 0, 2), dim=2).cpu().numpy()

    decoded_texts = []
    for seq in predicted_indices:
        # Use char_indexer's decode method, which handles blank removal and duplicate collapse
        decoded_texts.append(char_indexer.decode(seq.tolist()))
    return decoded_texts

# --- Evaluation Function ---
def evaluate_model(model: nn.Module, dataloader: DataLoader, char_indexer: CharIndexer, device: str):
    model.eval()
    criterion = nn.CTCLoss(blank=char_indexer.blank_token_idx, zero_infinity=True) 
    total_loss = 0
    all_predictions = []
    all_ground_truths = []

    with torch.no_grad():
        for inputs, targets_padded, _, target_lengths in tqdm(dataloader, desc="Evaluating"):
            inputs = inputs.to(device)
            targets_padded = targets_padded.to(device)
            target_lengths_tensor = target_lengths.to(device)

            output = model(inputs)

            outputs_seq_len_for_ctc = torch.full(
                size=(output.shape[1],),
                fill_value=output.shape[0],
                dtype=torch.long,
                device=device 
            )
            
            # CTC Loss calculation requires log_softmax on the output logits
            log_probs_for_loss = F.log_softmax(output, dim=2)

            # CTCLoss expects targets_padded as a 1D tensor and target_lengths_tensor as corresponding lengths
            loss = criterion(log_probs_for_loss, targets_padded, outputs_seq_len_for_ctc, target_lengths_tensor)
            total_loss += loss.item() * inputs.size(0)

            decoded_preds = ctc_greedy_decode(output, char_indexer)
            all_predictions.extend(decoded_preds)
            
            ground_truths_batch = []
            current_idx_in_concatenated_targets = 0 
            
            target_lengths_list = target_lengths.cpu().tolist() 

            for i in range(inputs.size(0)): 
                length = target_lengths_list[i]
                
                current_target_segment = targets_padded[current_idx_in_concatenated_targets : current_idx_in_concatenated_targets + length].tolist()
                ground_truths_batch.append(char_indexer.decode(current_target_segment))
                current_idx_in_concatenated_targets += length

            all_ground_truths.extend(ground_truths_batch)

    avg_loss = total_loss / len(dataloader.dataset)

    # Calculate Character Error Rate (CER)
    cer_sum = 0
    total_chars = 0
    for pred, gt in zip(all_predictions, all_ground_truths):
        cer_sum += editdistance.eval(pred, gt)
        total_chars += len(gt)
    char_error_rate = cer_sum / total_chars if total_chars > 0 else 0.0

    # Calculate Exact Match Accuracy (Word-level Accuracy)
    exact_match_accuracy = accuracy_score(all_ground_truths, all_predictions)

    return avg_loss, char_error_rate, exact_match_accuracy

# --- Training Function ---
def train_ocr_model(model: nn.Module, train_loader: DataLoader,

                    test_loader: DataLoader, char_indexer: CharIndexer,

                    epochs: int, device: str, progress_callback=None) -> tuple[nn.Module, dict]:
    """

    Trains the OCR model using CTC loss.

    """
    # CTCLoss needs the blank token index
    criterion = nn.CTCLoss(blank=char_indexer.blank_token_idx, zero_infinity=True) 
    optimizer = optim.Adam(model.parameters(), lr=0.001) # Using a fixed LR for now
    # Using ReduceLROnPlateau to adjust LR based on test loss (monitor 'min' loss)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.8, patience=5) # Removed verbose=True

    model.to(device) # Ensure model is on the correct device
    model.train() # Set model to training mode

    training_history = {
        'train_loss': [],
        'test_loss': [],
        'test_cer': [],
        'test_exact_match_accuracy': []
    }

    for epoch in range(epochs):
        running_loss = 0.0
        pbar_train = tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs} (Train)")
        for images, texts_encoded, _, text_lengths in pbar_train:
            images = images.to(device)
            # Ensure target tensors are on the correct device for CTCLoss calculation
            texts_encoded = texts_encoded.to(device)
            text_lengths = text_lengths.to(device)

            optimizer.zero_grad() # Clear gradients from previous step
            outputs = model(images) # (sequence_length_from_cnn, batch_size, num_classes)

            # `outputs.shape[0]` is the actual sequence length (T) produced by the model.
            # CTC loss expects `input_lengths` to be a tensor of shape (batch_size,) with these values.
            outputs_seq_len_for_ctc = torch.full(
                size=(outputs.shape[1],), # batch_size
                fill_value=outputs.shape[0], # actual sequence length (T) from model output
                dtype=torch.long,
                device=device 
            )
            
            # CTC Loss calculation requires log_softmax on the output logits
            log_probs_for_loss = F.log_softmax(outputs, dim=2) # (T, N, C)

            # Use outputs_seq_len_for_ctc for the input_lengths argument
            loss = criterion(log_probs_for_loss, texts_encoded, outputs_seq_len_for_ctc, text_lengths)
            loss.backward() # Backpropagate
            optimizer.step() # Update model weights

            running_loss += loss.item() * images.size(0) # Multiply by batch size for correct average
            pbar_train.set_postfix(loss=loss.item())

        epoch_train_loss = running_loss / len(train_loader.dataset)
        training_history['train_loss'].append(epoch_train_loss)

        # Evaluate on test set using the dedicated function
        # Ensure model is in eval mode before calling evaluate_model
        model.eval() 
        test_loss, test_cer, test_exact_match_accuracy = evaluate_model(model, test_loader, char_indexer, device)
        training_history['test_loss'].append(test_loss)
        training_history['test_cer'].append(test_cer)
        training_history['test_exact_match_accuracy'].append(test_exact_match_accuracy)

        # Adjust learning rate based on test loss
        scheduler.step(test_loss)

        print(f"Epoch {epoch+1}/{epochs}: Train Loss={epoch_train_loss:.4f}, "
              f"Test Loss={test_loss:.4f}, Test CER={test_cer:.4f}, Test Exact Match Acc={test_exact_match_accuracy:.4f}")

        if progress_callback:
            # Update progress bar with current epoch and key metrics
            progress_val = (epoch + 1) / epochs
            progress_callback(progress_val, text=f"Epoch {epoch+1}/{epochs} done. Test CER: {test_cer:.4f}, Test Exact Match Acc: {test_exact_match_accuracy:.4f}")

        model.train() # Set model back to training mode after evaluation

    return model, training_history

def save_ocr_model(model: nn.Module, path: str):
    """Saves the state dictionary of the trained OCR model."""
    torch.save(model.state_dict(), path)
    print(f"OCR model saved to {path}")

def load_ocr_model(model: nn.Module, path: str):
    """

    Loads a trained OCR model's state dictionary.

    Includes map_location to handle loading models trained on GPU to CPU, and vice versa.

    """
    model.load_state_dict(torch.load(path, map_location=torch.device('cpu'))) # Always load to CPU first
    model.eval() # Set to evaluation mode
    print(f"OCR model loaded from {path}")