Spaces:
Build error
Build error
File size: 13,116 Bytes
15dba6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# model_ocr.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from sklearn.metrics import accuracy_score
import editdistance
# Import config and char_indexer
from config import IMG_HEIGHT, NUM_CLASSES, BLANK_TOKEN
from data_handler_ocr import CharIndexer
from utils_ocr import binarize_image, resize_image_for_ocr, normalize_image_for_model
class CNN_Backbone(nn.Module):
"""
CNN feature extractor for OCR. Designed to produce features suitable for RNN.
Output feature map should have height 1 after the final pooling/reduction.
"""
def __init__(self, input_channels=1, output_channels=512):
super(CNN_Backbone, self).__init__()
self.cnn = nn.Sequential(
# First block
nn.Conv2d(input_channels, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2, stride=2), # H: 32 -> 16, W: W_in -> W_in/2
# Second block
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.MaxPool2d(kernel_size=2, stride=2), # H: 16 -> 8, W: W_in/2 -> W_in/4
# Third block (with two conv layers)
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
# This MaxPool2d effectively brings height from 8 to 4, with a small width adjustment due to padding
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1)), # H: 8 -> 4, W: (W/4) -> (W/4 + 1) (approx)
# Fourth block
nn.Conv2d(256, output_channels, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
# This AdaptiveAvgPool2d makes sure the height dimension becomes 1
# while preserving the width. This is crucial for RNN input.
nn.AdaptiveAvgPool2d((1, None)) # Output height 1, preserve width
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: (N, C, H, W) e.g., (B, 1, 32, W_img)
# Pass through the CNN layers
conv_features = self.cnn(x) # Output: (N, cnn_out_channels, 1, W_prime)
# Squeeze the height dimension (which is 1)
# This transforms (N, C_out, 1, W_prime) to (N, C_out, W_prime)
conv_features = conv_features.squeeze(2)
# Permute for RNN input: (sequence_length, batch_size, input_size)
# This transforms (N, C_out, W_prime) to (W_prime, N, C_out)
conv_features = conv_features.permute(2, 0, 1)
# Return the CNN features, ready for the RNN layer in CRNN
return conv_features
class BidirectionalLSTM(nn.Module):
"""Bidirectional LSTM layer for sequence modeling."""
def __init__(self, input_size: int, hidden_size: int, num_layers: int, dropout: float = 0.5):
super(BidirectionalLSTM, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers,
bidirectional=True, dropout=dropout, batch_first=False)
# batch_first=False expects input as (sequence_length, batch_size, input_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
output, _ = self.lstm(x) # [0] returns the output, [1] returns (h_n, c_n)
return output
class CRNN(nn.Module):
"""
Convolutional Recurrent Neural Network for OCR.
Combines CNN for feature extraction, LSTMs for sequence modeling,
and a final linear layer for character prediction.
"""
def __init__(self, num_classes: int, cnn_output_channels: int = 512,
rnn_hidden_size: int = 256, rnn_num_layers: int = 2): # Corrected parameter name
super(CRNN, self).__init__()
self.cnn = CNN_Backbone(output_channels=cnn_output_channels)
# Input to LSTM is the number of channels from the CNN output
self.rnn = BidirectionalLSTM(cnn_output_channels, rnn_hidden_size, rnn_num_layers) # Corrected usage
# Output of bidirectional LSTM is hidden_size * 2
self.fc = nn.Linear(rnn_hidden_size * 2, num_classes) # Final linear layer for classes
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: (N, C, H, W) e.g., (B, 1, 32, W_img)
# 1. Pass through the CNN to extract features
conv_features = self.cnn(x) # Output: (W_prime, N, C_out) after permute in CNN_Backbone
# 2. Pass CNN features through the RNN (LSTM)
rnn_features = self.rnn(conv_features) # Output: (W_prime, N, rnn_hidden_size * 2)
# 3. Pass RNN features through the final fully connected layer
# Apply the linear layer to each time step independently
# output will be (W_prime, N, num_classes)
output = self.fc(rnn_features)
return output
# --- Decoding Function ---
def ctc_greedy_decode(output: torch.Tensor, char_indexer: CharIndexer) -> list[str]:
"""
Performs greedy decoding on the CTC output.
output: (sequence_length, batch_size, num_classes) - raw logits
"""
# Apply log_softmax to get probabilities for argmax
log_probs = F.log_softmax(output, dim=2)
# Permute to (batch_size, sequence_length, num_classes) for argmax along class dim
predicted_indices = torch.argmax(log_probs.permute(1, 0, 2), dim=2).cpu().numpy()
decoded_texts = []
for seq in predicted_indices:
# Use char_indexer's decode method, which handles blank removal and duplicate collapse
decoded_texts.append(char_indexer.decode(seq.tolist()))
return decoded_texts
# --- Evaluation Function ---
def evaluate_model(model: nn.Module, dataloader: DataLoader, char_indexer: CharIndexer, device: str):
model.eval()
criterion = nn.CTCLoss(blank=char_indexer.blank_token_idx, zero_infinity=True)
total_loss = 0
all_predictions = []
all_ground_truths = []
with torch.no_grad():
for inputs, targets_padded, _, target_lengths in tqdm(dataloader, desc="Evaluating"):
inputs = inputs.to(device)
targets_padded = targets_padded.to(device)
target_lengths_tensor = target_lengths.to(device)
output = model(inputs)
outputs_seq_len_for_ctc = torch.full(
size=(output.shape[1],),
fill_value=output.shape[0],
dtype=torch.long,
device=device
)
# CTC Loss calculation requires log_softmax on the output logits
log_probs_for_loss = F.log_softmax(output, dim=2)
# CTCLoss expects targets_padded as a 1D tensor and target_lengths_tensor as corresponding lengths
loss = criterion(log_probs_for_loss, targets_padded, outputs_seq_len_for_ctc, target_lengths_tensor)
total_loss += loss.item() * inputs.size(0)
decoded_preds = ctc_greedy_decode(output, char_indexer)
all_predictions.extend(decoded_preds)
ground_truths_batch = []
current_idx_in_concatenated_targets = 0
target_lengths_list = target_lengths.cpu().tolist()
for i in range(inputs.size(0)):
length = target_lengths_list[i]
current_target_segment = targets_padded[current_idx_in_concatenated_targets : current_idx_in_concatenated_targets + length].tolist()
ground_truths_batch.append(char_indexer.decode(current_target_segment))
current_idx_in_concatenated_targets += length
all_ground_truths.extend(ground_truths_batch)
avg_loss = total_loss / len(dataloader.dataset)
# Calculate Character Error Rate (CER)
cer_sum = 0
total_chars = 0
for pred, gt in zip(all_predictions, all_ground_truths):
cer_sum += editdistance.eval(pred, gt)
total_chars += len(gt)
char_error_rate = cer_sum / total_chars if total_chars > 0 else 0.0
# Calculate Exact Match Accuracy (Word-level Accuracy)
exact_match_accuracy = accuracy_score(all_ground_truths, all_predictions)
return avg_loss, char_error_rate, exact_match_accuracy
# --- Training Function ---
def train_ocr_model(model: nn.Module, train_loader: DataLoader,
test_loader: DataLoader, char_indexer: CharIndexer,
epochs: int, device: str, progress_callback=None) -> tuple[nn.Module, dict]:
"""
Trains the OCR model using CTC loss.
"""
# CTCLoss needs the blank token index
criterion = nn.CTCLoss(blank=char_indexer.blank_token_idx, zero_infinity=True)
optimizer = optim.Adam(model.parameters(), lr=0.001) # Using a fixed LR for now
# Using ReduceLROnPlateau to adjust LR based on test loss (monitor 'min' loss)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.8, patience=5) # Removed verbose=True
model.to(device) # Ensure model is on the correct device
model.train() # Set model to training mode
training_history = {
'train_loss': [],
'test_loss': [],
'test_cer': [],
'test_exact_match_accuracy': []
}
for epoch in range(epochs):
running_loss = 0.0
pbar_train = tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs} (Train)")
for images, texts_encoded, _, text_lengths in pbar_train:
images = images.to(device)
# Ensure target tensors are on the correct device for CTCLoss calculation
texts_encoded = texts_encoded.to(device)
text_lengths = text_lengths.to(device)
optimizer.zero_grad() # Clear gradients from previous step
outputs = model(images) # (sequence_length_from_cnn, batch_size, num_classes)
# `outputs.shape[0]` is the actual sequence length (T) produced by the model.
# CTC loss expects `input_lengths` to be a tensor of shape (batch_size,) with these values.
outputs_seq_len_for_ctc = torch.full(
size=(outputs.shape[1],), # batch_size
fill_value=outputs.shape[0], # actual sequence length (T) from model output
dtype=torch.long,
device=device
)
# CTC Loss calculation requires log_softmax on the output logits
log_probs_for_loss = F.log_softmax(outputs, dim=2) # (T, N, C)
# Use outputs_seq_len_for_ctc for the input_lengths argument
loss = criterion(log_probs_for_loss, texts_encoded, outputs_seq_len_for_ctc, text_lengths)
loss.backward() # Backpropagate
optimizer.step() # Update model weights
running_loss += loss.item() * images.size(0) # Multiply by batch size for correct average
pbar_train.set_postfix(loss=loss.item())
epoch_train_loss = running_loss / len(train_loader.dataset)
training_history['train_loss'].append(epoch_train_loss)
# Evaluate on test set using the dedicated function
# Ensure model is in eval mode before calling evaluate_model
model.eval()
test_loss, test_cer, test_exact_match_accuracy = evaluate_model(model, test_loader, char_indexer, device)
training_history['test_loss'].append(test_loss)
training_history['test_cer'].append(test_cer)
training_history['test_exact_match_accuracy'].append(test_exact_match_accuracy)
# Adjust learning rate based on test loss
scheduler.step(test_loss)
print(f"Epoch {epoch+1}/{epochs}: Train Loss={epoch_train_loss:.4f}, "
f"Test Loss={test_loss:.4f}, Test CER={test_cer:.4f}, Test Exact Match Acc={test_exact_match_accuracy:.4f}")
if progress_callback:
# Update progress bar with current epoch and key metrics
progress_val = (epoch + 1) / epochs
progress_callback(progress_val, text=f"Epoch {epoch+1}/{epochs} done. Test CER: {test_cer:.4f}, Test Exact Match Acc: {test_exact_match_accuracy:.4f}")
model.train() # Set model back to training mode after evaluation
return model, training_history
def save_ocr_model(model: nn.Module, path: str):
"""Saves the state dictionary of the trained OCR model."""
torch.save(model.state_dict(), path)
print(f"OCR model saved to {path}")
def load_ocr_model(model: nn.Module, path: str):
"""
Loads a trained OCR model's state dictionary.
Includes map_location to handle loading models trained on GPU to CPU, and vice versa.
"""
model.load_state_dict(torch.load(path, map_location=torch.device('cpu'))) # Always load to CPU first
model.eval() # Set to evaluation mode
print(f"OCR model loaded from {path}")
|