File size: 7,241 Bytes
15dba6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#data_handler_ocr.py

import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import os
from PIL import Image
import numpy as np
import torch.nn.functional as F

# Import utility functions and config
from config import (
    VOCABULARY, BLANK_TOKEN, BLANK_TOKEN_SYMBOL, IMG_HEIGHT,
    TRAIN_IMAGES_DIR, TEST_IMAGES_DIR,
    TRAIN_SAMPLES_LIMIT, TEST_SAMPLES_LIMIT 
)
from utils_ocr import load_image_as_grayscale, binarize_image, resize_image_for_ocr, normalize_image_for_model

class CharIndexer:
    """Manages character-to-index and index-to-character mappings."""
    def __init__(self, vocabulary_string: str, blank_token_symbol: str):
        self.chars = sorted(list(set(vocabulary_string)))
        self.char_to_idx = {char: i for i, char in enumerate(self.chars)}
        self.idx_to_char = {i: char for i, char in enumerate(self.chars)}
        
        if blank_token_symbol not in self.char_to_idx:
            raise ValueError(f"Blank token symbol '{blank_token_symbol}' not found in provided vocabulary string: '{vocabulary_string}'")
            
        self.blank_token_idx = self.char_to_idx[blank_token_symbol]
        self.num_classes = len(self.chars)

        if self.blank_token_idx >= self.num_classes:
             raise ValueError(f"Blank token index ({self.blank_token_idx}) is out of range for num_classes ({self.num_classes}). This indicates a configuration mismatch.")

        print(f"CharIndexer initialized: num_classes={self.num_classes}, blank_token_idx={self.blank_token_idx}")
        print(f"Mapped blank symbol: '{self.idx_to_char[self.blank_token_idx]}'")

    def encode(self, text: str) -> list[int]:
        """Converts a text string to a list of integer indices."""
        encoded_list = []
        for char in text:
            if char in self.char_to_idx:
                encoded_list.append(self.char_to_idx[char])
            else:
                print(f"Warning: Character '{char}' not found in CharIndexer vocabulary. Mapping to blank token.")
                encoded_list.append(self.blank_token_idx)
        return encoded_list

    def decode(self, indices: list[int]) -> str:
        """Converts a list of integer indices back to a text string."""
        decoded_text = []
        for i, idx in enumerate(indices):
            if idx == self.blank_token_idx:
                continue # Skip blank tokens
            
            if i > 0 and indices[i-1] == idx:
                continue
            
            if idx in self.idx_to_char:
                decoded_text.append(self.idx_to_char[idx])
            else:
                print(f"Warning: Index {idx} not found in CharIndexer's idx_to_char mapping during decoding.")
                
        return "".join(decoded_text)

class OCRDataset(Dataset):
    """

    Custom PyTorch Dataset for the Handwritten Name Recognition task.

    Loads images and their corresponding text labels.

    """
    def __init__(self, dataframe: pd.DataFrame, char_indexer: CharIndexer, image_dir: str, transform=None):
        self.data = dataframe
        self.char_indexer = char_indexer
        self.image_dir = image_dir
        
        if transform is None:
            self.transform = transforms.Compose([
                transforms.Lambda(lambda img: binarize_image(img)), 
                transforms.Lambda(lambda img: resize_image_for_ocr(img, IMG_HEIGHT)), # Resize image to fixed height
                transforms.ToTensor(), # Convert PIL Image to PyTorch Tensor (H, W) -> (1, H, W), scales to [0,1]
                transforms.Lambda(normalize_image_for_model) # Normalize pixel values to [-1, 1]
            ])
        else:
            self.transform = transform


    def __len__(self) -> int:
        return len(self.data)

    def __getitem__(self, idx):
        raw_filename_entry = self.data.loc[idx, 'FILENAME'] 
        ground_truth_text = self.data.loc[idx, 'IDENTITY']

        filename = raw_filename_entry.split(',')[0].strip()
        img_path = os.path.join(self.image_dir, filename)
        ground_truth_text = str(ground_truth_text)

        try:
            image = load_image_as_grayscale(img_path) # Returns PIL Image 'L'
        except FileNotFoundError:
            print(f"Error: Image file not found at {img_path}. Skipping this item.")
            raise

        if self.transform:
            image = self.transform(image)
        
        image_width = image.shape[2] # Assuming image is (C, H, W) after transform

        text_encoded = torch.tensor(self.char_indexer.encode(ground_truth_text), dtype=torch.long)
        text_length = len(text_encoded)

        return image, text_encoded, image_width, text_length

def ocr_collate_fn(batch: list) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    """

    Custom collate function for the DataLoader to handle variable-width images

    and variable-length text sequences for CTC loss.

    """
    images, texts, image_widths, text_lengths = zip(*batch)

    max_batch_width = max(image_widths)
    padded_images = [F.pad(img, (0, max_batch_width - img.shape[2]), 'constant', 0) for img in images]
    images_batch = torch.stack(padded_images, 0)

    texts_batch = torch.cat(texts, 0)
    text_lengths_tensor = torch.tensor(list(text_lengths), dtype=torch.long)
    image_widths_tensor = torch.tensor(image_widths, dtype=torch.long)

    return images_batch, texts_batch, image_widths_tensor, text_lengths_tensor


def load_ocr_dataframes(train_csv_path: str, test_csv_path: str) -> tuple[pd.DataFrame, pd.DataFrame]:
    """

    Loads training and testing dataframes.

    Assumes CSVs have 'FILENAME' and 'IDENTITY' columns.

    Applies dataset limits from config.py.

    """
    train_df = pd.read_csv(train_csv_path, encoding='ISO-8859-1')
    test_df = pd.read_csv(test_csv_path, encoding='ISO-8859-1')

    # Apply limits if they are set (not 0)
    if TRAIN_SAMPLES_LIMIT > 0:
        train_df = train_df.head(TRAIN_SAMPLES_LIMIT)
        print(f"Limited training data to {TRAIN_SAMPLES_LIMIT} samples.")
    if TEST_SAMPLES_LIMIT > 0:
        test_df = test_df.head(TEST_SAMPLES_LIMIT)
        print(f"Limited test data to {TEST_SAMPLES_LIMIT} samples.")

    return train_df, test_df

def create_ocr_dataloaders(train_df: pd.DataFrame, test_df: pd.DataFrame,

                           char_indexer: CharIndexer, batch_size: int) -> tuple[DataLoader, DataLoader]:
    """

    Creates PyTorch DataLoader objects for OCR training and testing datasets,

    using specific image directories for train/test.

    """
    train_dataset = OCRDataset(train_df, char_indexer, TRAIN_IMAGES_DIR)
    test_dataset = OCRDataset(test_df, char_indexer, TEST_IMAGES_DIR)

    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
                              num_workers=0, collate_fn=ocr_collate_fn)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False,
                             num_workers=0, collate_fn=ocr_collate_fn)
    return train_loader, test_loader