# config.py import os # --- Paths --- BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(BASE_DIR, 'data') MODELS_DIR = os.path.join(BASE_DIR, 'models') TRAIN_IMAGES_DIR = os.path.join(DATA_DIR, 'images') TEST_IMAGES_DIR = os.path.join(DATA_DIR, 'images') TRAIN_CSV_PATH = os.path.join(DATA_DIR, 'train.csv') TEST_CSV_PATH = os.path.join(DATA_DIR, 'test.csv') MODEL_SAVE_PATH = os.path.join(MODELS_DIR, 'handwritten_name_ocr_model.pth') # --- Character Set and OCR Configuration --- CHARS = " !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~" BLANK_TOKEN_SYMBOL = 'Þ' VOCABULARY = CHARS + BLANK_TOKEN_SYMBOL NUM_CLASSES = len(VOCABULARY) BLANK_TOKEN = VOCABULARY.find(BLANK_TOKEN_SYMBOL) # --- Sanity Checks --- if BLANK_TOKEN == -1: raise ValueError(f"Error: BLANK_TOKEN_SYMBOL '{BLANK_TOKEN_SYMBOL}' not found in VOCABULARY. Check config.py definitions.") if BLANK_TOKEN >= NUM_CLASSES: raise ValueError(f"Error: BLANK_TOKEN index ({BLANK_TOKEN}) must be less than NUM_CLASSES ({NUM_CLASSES}).") print(f"Config Loaded: NUM_CLASSES={NUM_CLASSES}, BLANK_TOKEN_INDEX={BLANK_TOKEN}") print(f"Vocabulary Length: {len(VOCABULARY)}") print(f"Blank Symbol: '{BLANK_TOKEN_SYMBOL}' at index {BLANK_TOKEN}") # --- Image Preprocessing Parameters --- IMG_HEIGHT = 32 # Target height for all input images to the model MAX_IMG_WIDTH = 1024 # Adjust this value based on your typical image widths and available RAM # --- Training Parameters --- BATCH_SIZE = 10 # NEW: Dataset Limits TRAIN_SAMPLES_LIMIT = 1000 TEST_SAMPLES_LIMIT = 1000 NUM_EPOCHS = 5 LEARNING_RATE = 0.001