# data_handler_ocr.py import pandas as pd import torch from torch.utils.data import Dataset, DataLoader from torchvision import transforms import os from PIL import Image import numpy as np import torch.nn.functional as F # Import utility functions and config from config import ( VOCABULARY, BLANK_TOKEN, BLANK_TOKEN_SYMBOL, IMG_HEIGHT, TRAIN_IMAGES_DIR, TEST_IMAGES_DIR, TRAIN_SAMPLES_LIMIT, TEST_SAMPLES_LIMIT ) from utils_ocr import load_image_as_grayscale, binarize_image, resize_image_for_ocr, normalize_image_for_model class CharIndexer: """Manages character-to-index and index-to-character mappings.""" def __init__(self, vocabulary_string: str, blank_token_symbol: str): self.chars = sorted(list(set(vocabulary_string))) self.char_to_idx = {char: i for i, char in enumerate(self.chars)} self.idx_to_char = {i: char for i, char in enumerate(self.chars)} if blank_token_symbol not in self.char_to_idx: raise ValueError(f"Blank token symbol '{blank_token_symbol}' not found in provided vocabulary string: '{vocabulary_string}'") self.blank_token_idx = self.char_to_idx[blank_token_symbol] self.num_classes = len(self.chars) if self.blank_token_idx >= self.num_classes: raise ValueError(f"Blank token index ({self.blank_token_idx}) is out of range for num_classes ({self.num_classes}). This indicates a configuration mismatch.") print(f"CharIndexer initialized: num_classes={self.num_classes}, blank_token_idx={self.blank_token_idx}") print(f"Mapped blank symbol: '{self.idx_to_char[self.blank_token_idx]}'") def encode(self, text: str) -> list[int]: """Converts a text string to a list of integer indices.""" encoded_list = [] for char in text: if char in self.char_to_idx: encoded_list.append(self.char_to_idx[char]) else: print(f"Warning: Character '{char}' not found in CharIndexer vocabulary. Mapping to blank token.") encoded_list.append(self.blank_token_idx) return encoded_list def decode(self, indices: list[int]) -> str: """Converts a list of integer indices back to a text string.""" decoded_text = [] for i, idx in enumerate(indices): if idx == self.blank_token_idx: continue # Skip blank tokens if i > 0 and indices[i-1] == idx: continue if idx in self.idx_to_char: decoded_text.append(self.idx_to_char[idx]) else: print(f"Warning: Index {idx} not found in CharIndexer's idx_to_char mapping during decoding.") return "".join(decoded_text) class OCRDataset(Dataset): """ Custom PyTorch Dataset for the Handwritten Name Recognition task. Loads images and their corresponding text labels. """ def __init__(self, dataframe: pd.DataFrame, char_indexer: CharIndexer, image_dir: str, transform=None): self.data = dataframe self.char_indexer = char_indexer self.image_dir = image_dir if transform is None: self.transform = transforms.Compose([ transforms.Lambda(lambda img: binarize_image(img)), transforms.Lambda(lambda img: resize_image_for_ocr(img, IMG_HEIGHT)), # Resize image to fixed height transforms.ToTensor(), # Convert PIL Image to PyTorch Tensor (H, W) -> (1, H, W), scales to [0,1] transforms.Lambda(normalize_image_for_model) # Normalize pixel values to [-1, 1] ]) else: self.transform = transform def __len__(self) -> int: return len(self.data) def __getitem__(self, idx): raw_filename_entry = self.data.loc[idx, 'FILENAME'] ground_truth_text = self.data.loc[idx, 'IDENTITY'] filename = raw_filename_entry.split(',')[0].strip() img_path = os.path.join(self.image_dir, filename) ground_truth_text = str(ground_truth_text) try: image = load_image_as_grayscale(img_path) # Returns PIL Image 'L' except FileNotFoundError: print(f"Error: Image file not found at {img_path}. Skipping this item.") raise if self.transform: image = self.transform(image) image_width = image.shape[2] # Assuming image is (C, H, W) after transform text_encoded = torch.tensor(self.char_indexer.encode(ground_truth_text), dtype=torch.long) text_length = len(text_encoded) return image, text_encoded, image_width, text_length def ocr_collate_fn(batch: list) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Custom collate function for the DataLoader to handle variable-width images and variable-length text sequences for CTC loss. """ images, texts, image_widths, text_lengths = zip(*batch) max_batch_width = max(image_widths) padded_images = [F.pad(img, (0, max_batch_width - img.shape[2]), 'constant', 0) for img in images] images_batch = torch.stack(padded_images, 0) texts_batch = torch.cat(texts, 0) text_lengths_tensor = torch.tensor(list(text_lengths), dtype=torch.long) image_widths_tensor = torch.tensor(image_widths, dtype=torch.long) return images_batch, texts_batch, image_widths_tensor, text_lengths_tensor def load_ocr_dataframes(train_csv_path: str, test_csv_path: str) -> tuple[pd.DataFrame, pd.DataFrame]: """ Loads training and testing dataframes. Assumes CSVs have 'FILENAME' and 'IDENTITY' columns. Applies dataset limits from config.py. """ train_df = pd.read_csv(train_csv_path, encoding='ISO-8859-1') test_df = pd.read_csv(test_csv_path, encoding='ISO-8859-1') # Apply limits if they are set (not 0) if TRAIN_SAMPLES_LIMIT > 0: train_df = train_df.head(TRAIN_SAMPLES_LIMIT) print(f"Limited training data to {TRAIN_SAMPLES_LIMIT} samples.") if TEST_SAMPLES_LIMIT > 0: test_df = test_df.head(TEST_SAMPLES_LIMIT) print(f"Limited test data to {TEST_SAMPLES_LIMIT} samples.") return train_df, test_df def create_ocr_dataloaders(train_df: pd.DataFrame, test_df: pd.DataFrame, char_indexer: CharIndexer, batch_size: int) -> tuple[DataLoader, DataLoader]: """ Creates PyTorch DataLoader objects for OCR training and testing datasets, using specific image directories for train/test. """ train_dataset = OCRDataset(train_df, char_indexer, TRAIN_IMAGES_DIR) test_dataset = OCRDataset(test_df, char_indexer, TEST_IMAGES_DIR) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0, collate_fn=ocr_collate_fn) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=0, collate_fn=ocr_collate_fn) return train_loader, test_loader