koaning commited on
Commit
b9bfbae
Β·
verified Β·
1 Parent(s): 7f9ee83

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +181 -399
app.py CHANGED
@@ -1,469 +1,251 @@
1
  import marimo
2
 
3
- __generated_with = "0.9.2"
4
  app = marimo.App()
5
 
6
 
7
- @app.cell
8
- def __():
9
- import marimo as mo
10
-
11
- mo.md("# Welcome to marimo! πŸŒŠπŸƒ")
12
- return (mo,)
13
-
14
-
15
- @app.cell
16
- def __(mo):
17
- slider = mo.ui.slider(1, 22)
18
- return (slider,)
19
-
20
-
21
- @app.cell
22
- def __(mo, slider):
23
- mo.md(
24
- f"""
25
- marimo is a **reactive** Python notebook.
26
-
27
- This means that unlike traditional notebooks, marimo notebooks **run
28
- automatically** when you modify them or
29
- interact with UI elements, like this slider: {slider}.
30
-
31
- {"##" + "πŸƒ" * slider.value}
32
- """
33
- )
34
- return
35
-
36
-
37
- @app.cell(hide_code=True)
38
- def __(mo):
39
- mo.accordion(
40
- {
41
- "Tip: disabling automatic execution": mo.md(
42
- rf"""
43
- marimo lets you disable automatic execution: just go into the
44
- notebook settings and set
45
-
46
- "Runtime > On Cell Change" to "lazy".
47
-
48
- When the runtime is lazy, after running a cell, marimo marks its
49
- descendants as stale instead of automatically running them. The
50
- lazy runtime puts you in control over when cells are run, while
51
- still giving guarantees about the notebook state.
52
- """
53
- )
54
- }
55
- )
56
- return
57
-
58
-
59
  @app.cell(hide_code=True)
60
- def __(mo):
61
  mo.md(
62
- """
63
- Tip: This is a tutorial notebook. You can create your own notebooks
64
- by entering `marimo edit` at the command line.
65
- """
66
- ).callout()
67
- return
68
-
69
-
70
- @app.cell(hide_code=True)
71
- def __(mo):
72
- mo.md(
73
- """
74
- ## 1. Reactive execution
75
 
76
- A marimo notebook is made up of small blocks of Python code called
77
- cells.
78
 
79
- marimo reads your cells and models the dependencies among them: whenever
80
- a cell that defines a global variable is run, marimo
81
- **automatically runs** all cells that reference that variable.
82
 
83
- Reactivity keeps your program state and outputs in sync with your code,
84
- making for a dynamic programming environment that prevents bugs before they
85
- happen.
86
  """
87
  )
88
  return
89
 
90
 
91
- @app.cell(hide_code=True)
92
- def __(changed, mo):
93
- (
94
- mo.md(
95
- f"""
96
- **✨ Nice!** The value of `changed` is now {changed}.
97
-
98
- When you updated the value of the variable `changed`, marimo
99
- **reacted** by running this cell automatically, because this cell
100
- references the global variable `changed`.
101
-
102
- Reactivity ensures that your notebook state is always
103
- consistent, which is crucial for doing good science; it's also what
104
- enables marimo notebooks to double as tools and apps.
105
- """
106
- )
107
- if changed
108
- else mo.md(
109
- """
110
- **🌊 See it in action.** In the next cell, change the value of the
111
- variable `changed` to `True`, then click the run button.
112
- """
113
- )
114
- )
115
- return
116
-
117
-
118
  @app.cell
119
- def __():
120
- changed = False
121
- return (changed,)
122
-
123
-
124
- @app.cell(hide_code=True)
125
- def __(mo):
126
- mo.accordion(
127
- {
128
- "Tip: execution order": (
129
- """
130
- The order of cells on the page has no bearing on
131
- the order in which cells are executed: marimo knows that a cell
132
- reading a variable must run after the cell that defines it. This
133
- frees you to organize your code in the way that makes the most
134
- sense for you.
135
- """
136
- )
137
- }
 
 
 
 
 
138
  )
139
- return
140
 
141
 
142
  @app.cell(hide_code=True)
143
- def __(mo):
144
- mo.md(
145
- """
146
- **Global names must be unique.** To enable reactivity, marimo imposes a
147
- constraint on how names appear in cells: no two cells may define the same
148
- variable.
149
- """
150
- )
151
  return
152
 
153
 
154
- @app.cell(hide_code=True)
155
- def __(mo):
156
- mo.accordion(
157
- {
158
- "Tip: encapsulation": (
159
- """
160
- By encapsulating logic in functions, classes, or Python modules,
161
- you can minimize the number of global variables in your notebook.
162
- """
163
- )
164
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
  )
166
- return
167
 
168
 
169
  @app.cell(hide_code=True)
170
- def __(mo):
171
- mo.accordion(
172
- {
173
- "Tip: private variables": (
174
- """
175
- Variables prefixed with an underscore are "private" to a cell, so
176
- they can be defined by multiple cells.
177
- """
178
- )
179
- }
180
- )
181
  return
182
 
183
 
184
- @app.cell(hide_code=True)
185
- def __(mo):
186
- mo.md(
187
- """
188
- ## 2. UI elements
189
-
190
- Cells can output interactive UI elements. Interacting with a UI
191
- element **automatically triggers notebook execution**: when
192
- you interact with a UI element, its value is sent back to Python, and
193
- every cell that references that element is re-run.
194
-
195
- marimo provides a library of UI elements to choose from under
196
- `marimo.ui`.
197
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
  )
199
- return
200
 
201
 
202
  @app.cell
203
- def __(mo):
204
- mo.md("""**🌊 Some UI elements.** Try interacting with the below elements.""")
205
  return
206
 
207
 
208
  @app.cell
209
- def __(mo):
210
- icon = mo.ui.dropdown(["πŸƒ", "🌊", "✨"], value="πŸƒ")
211
- return (icon,)
212
-
213
 
214
- @app.cell
215
- def __(icon, mo):
216
- repetitions = mo.ui.slider(1, 16, label=f"number of {icon.value}: ")
217
- return (repetitions,)
218
 
219
 
220
  @app.cell
221
- def __(icon, repetitions):
222
- icon, repetitions
223
  return
224
 
225
 
226
  @app.cell
227
- def __(icon, mo, repetitions):
228
- mo.md("# " + icon.value * repetitions.value)
229
- return
230
-
231
-
232
- @app.cell(hide_code=True)
233
- def __(mo):
234
- mo.md(
235
- """
236
- ## 3. marimo is just Python
237
 
238
- marimo cells parse Python (and only Python), and marimo notebooks are
239
- stored as pure Python files β€” outputs are _not_ included. There's no
240
- magical syntax.
 
 
 
 
241
 
242
- The Python files generated by marimo are:
243
 
244
- - easily versioned with git, yielding minimal diffs
245
- - legible for both humans and machines
246
- - formattable using your tool of choice,
247
- - usable as Python scripts, with UI elements taking their default
248
- values, and
249
- - importable by other modules (more on that in the future).
250
- """
251
- )
252
- return
 
 
 
253
 
254
 
255
  @app.cell(hide_code=True)
256
- def __(mo):
257
- mo.md(
258
- """
259
- ## 4. Running notebooks as apps
260
-
261
- marimo notebooks can double as apps. Click the app window icon in the
262
- bottom-right to see this notebook in "app view."
263
-
264
- Serve a notebook as an app with `marimo run` at the command-line.
265
- Of course, you can use marimo just to level-up your
266
- notebooking, without ever making apps.
267
- """
268
- )
269
  return
270
 
271
 
272
- @app.cell(hide_code=True)
273
- def __(mo):
274
- mo.md(
275
- """
276
- ## 5. The `marimo` command-line tool
277
-
278
- **Creating and editing notebooks.** Use
279
-
280
- ```
281
- marimo edit
282
- ```
283
-
284
- in a terminal to start the marimo notebook server. From here
285
- you can create a new notebook or edit existing ones.
286
-
287
-
288
- **Running as apps.** Use
289
-
290
- ```
291
- marimo run notebook.py
292
- ```
293
-
294
- to start a webserver that serves your notebook as an app in read-only mode,
295
- with code cells hidden.
296
-
297
- **Convert a Jupyter notebook.** Convert a Jupyter notebook to a marimo
298
- notebook using `marimo convert`:
299
-
300
- ```
301
- marimo convert your_notebook.ipynb > your_app.py
302
- ```
303
-
304
- **Tutorials.** marimo comes packaged with tutorials:
305
-
306
- - `dataflow`: more on marimo's automatic execution
307
- - `ui`: how to use UI elements
308
- - `markdown`: how to write markdown, with interpolated values and
309
- LaTeX
310
- - `plots`: how plotting works in marimo
311
- - `sql`: how to use SQL
312
- - `layout`: layout elements in marimo
313
- - `fileformat`: how marimo's file format works
314
- - `markdown-format`: for using `.md` files in marimo
315
- - `for-jupyter-users`: if you are coming from Jupyter
316
-
317
- Start a tutorial with `marimo tutorial`; for example,
318
-
319
- ```
320
- marimo tutorial dataflow
321
- ```
322
-
323
- In addition to tutorials, we have examples in our
324
- [our GitHub repo](https://www.github.com/marimo-team/marimo/tree/main/examples).
325
- """
326
- )
327
- return
328
 
329
 
330
  @app.cell(hide_code=True)
331
- def __(mo):
332
- mo.md(
333
- """
334
- ## 6. The marimo editor
335
-
336
- Here are some tips to help you get started with the marimo editor.
337
- """
338
- )
339
  return
340
 
341
 
342
  @app.cell
343
- def __(mo, tips):
344
- mo.accordion(tips)
345
- return
346
 
347
 
348
- @app.cell(hide_code=True)
349
- def __(mo):
350
- mo.md("""## Finally, a fun fact""")
351
- return
352
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353
 
354
- @app.cell(hide_code=True)
355
- def __(mo):
356
- mo.md(
357
- """
358
- The name "marimo" is a reference to a type of algae that, under
359
- the right conditions, clumps together to form a small sphere
360
- called a "marimo moss ball". Made of just strands of algae, these
361
- beloved assemblages are greater than the sum of their parts.
362
- """
363
- )
364
- return
365
 
366
 
367
- @app.cell(hide_code=True)
368
- def __():
369
- tips = {
370
- "Saving": (
371
- """
372
- **Saving**
373
-
374
- - _Name_ your app using the box at the top of the screen, or
375
- with `Ctrl/Cmd+s`. You can also create a named app at the
376
- command line, e.g., `marimo edit app_name.py`.
377
-
378
- - _Save_ by clicking the save icon on the bottom right, or by
379
- inputting `Ctrl/Cmd+s`. By default marimo is configured
380
- to autosave.
381
- """
382
- ),
383
- "Running": (
384
- """
385
- 1. _Run a cell_ by clicking the play ( β–· ) button on the top
386
- right of a cell, or by inputting `Ctrl/Cmd+Enter`.
387
-
388
- 2. _Run a stale cell_ by clicking the yellow run button on the
389
- right of the cell, or by inputting `Ctrl/Cmd+Enter`. A cell is
390
- stale when its code has been modified but not run.
391
-
392
- 3. _Run all stale cells_ by clicking the play ( β–· ) button on
393
- the bottom right of the screen, or input `Ctrl/Cmd+Shift+r`.
394
- """
395
- ),
396
- "Console Output": (
397
- """
398
- Console output (e.g., `print()` statements) is shown below a
399
- cell.
400
- """
401
- ),
402
- "Creating, Moving, and Deleting Cells": (
403
- """
404
- 1. _Create_ a new cell above or below a given one by clicking
405
- the plus button to the left of the cell, which appears on
406
- mouse hover.
407
-
408
- 2. _Move_ a cell up or down by dragging on the handle to the
409
- right of the cell, which appears on mouse hover.
410
-
411
- 3. _Delete_ a cell by clicking the trash bin icon. Bring it
412
- back by clicking the undo button on the bottom right of the
413
- screen, or with `Ctrl/Cmd+Shift+z`.
414
- """
415
- ),
416
- "Disabling Automatic Execution": (
417
- """
418
- Via the notebook settings (gear icon) or footer panel, you
419
- can disable automatic execution. This is helpful when
420
- working with expensive notebooks or notebooks that have
421
- side-effects like database transactions.
422
- """
423
- ),
424
- "Disabling Cells": (
425
- """
426
- You can disable a cell via the cell context menu.
427
- marimo will never run a disabled cell or any cells that depend on it.
428
- This can help prevent accidental execution of expensive computations
429
- when editing a notebook.
430
- """
431
- ),
432
- "Code Folding": (
433
- """
434
- You can collapse or fold the code in a cell by clicking the arrow
435
- icons in the line number column to the left, or by using keyboard
436
- shortcuts.
437
-
438
- Use the command palette (`Ctrl/Cmd+k`) or a keyboard shortcut to
439
- quickly fold or unfold all cells.
440
- """
441
- ),
442
- "Code Formatting": (
443
- """
444
- If you have [ruff](https://github.com/astral-sh/ruff) installed,
445
- you can format a cell with the keyboard shortcut `Ctrl/Cmd+b`.
446
- """
447
- ),
448
- "Command Palette": (
449
- """
450
- Use `Ctrl/Cmd+k` to open the command palette.
451
- """
452
- ),
453
- "Keyboard Shortcuts": (
454
- """
455
- Open the notebook menu (top-right) or input `Ctrl/Cmd+Shift+h` to
456
- view a list of all keyboard shortcuts.
457
- """
458
- ),
459
- "Configuration": (
460
- """
461
- Configure the editor by clicking the gears icon near the top-right
462
- of the screen.
463
- """
464
- ),
465
- }
466
- return (tips,)
467
 
468
 
469
  if __name__ == "__main__":
 
1
  import marimo
2
 
3
+ __generated_with = "0.12.8"
4
  app = marimo.App()
5
 
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  @app.cell(hide_code=True)
8
+ def _(mo):
9
  mo.md(
10
+ r"""
11
+ ## Face Embeddings of World Leaders
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ This notebook explores face embeddings using a subset of the **Labeled Faces in the Wild** dataset, focused on public figures. We'll use standard Python and scikit-learn libraries to load the data, embed images, reduce dimensionality, and visualize clustering behavior.
 
14
 
15
+ This example builds on a demo from the Marimo gallery using the MNIST dataset. Here, we adapt it to work with a facial recognition dataset of public figures. While facial recognition has limited responsible use cases, this curated subset includes only world leaders β€” a group I feel comfortable experimenting with in a technical context.
 
 
16
 
17
+ We'll start with our imports:
 
 
18
  """
19
  )
20
  return
21
 
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  @app.cell
24
+ def _():
25
+ from time import time
26
+
27
+ import matplotlib.pyplot as plt
28
+ from scipy.stats import loguniform
29
+
30
+ from sklearn.datasets import fetch_lfw_people
31
+ from sklearn.decomposition import PCA
32
+ from sklearn.metrics import ConfusionMatrixDisplay, classification_report
33
+ from sklearn.model_selection import RandomizedSearchCV, train_test_split
34
+ from sklearn.preprocessing import StandardScaler
35
+ from sklearn.svm import SVC
36
+ return (
37
+ ConfusionMatrixDisplay,
38
+ PCA,
39
+ RandomizedSearchCV,
40
+ SVC,
41
+ StandardScaler,
42
+ classification_report,
43
+ fetch_lfw_people,
44
+ loguniform,
45
+ plt,
46
+ time,
47
+ train_test_split,
48
  )
 
49
 
50
 
51
  @app.cell(hide_code=True)
52
+ def _(mo):
53
+ mo.md(r"""We're using `fetch_lfw_people` from `sklearn.datasets` to load a curated subset of the LFW dataset β€” restricted to individuals with at least 70 images, resulting in 7 distinct people and just over 1,200 samples. These happen to be mostly world leaders, which makes the demo both manageable and fun to explore.""")
 
 
 
 
 
 
54
  return
55
 
56
 
57
+ @app.cell
58
+ def _(fetch_lfw_people):
59
+ lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
60
+
61
+ # introspect the images arrays to find the shapes (for plotting)
62
+ n_samples, h, w = lfw_people.images.shape
63
+
64
+ # for machine learning we use the 2 data directly (as relative pixel
65
+ # positions info is ignored by this model)
66
+ X = lfw_people.data
67
+ n_features = X.shape[1]
68
+
69
+ # the label to predict is the id of the person
70
+ Y = lfw_people.target
71
+ target_names = lfw_people.target_names
72
+ n_classes = target_names.shape[0]
73
+
74
+ print("Total dataset size:")
75
+ print("n_samples: %d" % n_samples)
76
+ print("n_features: %d" % n_features)
77
+ print("n_classes: %d" % n_classes)
78
+ return (
79
+ X,
80
+ Y,
81
+ h,
82
+ lfw_people,
83
+ n_classes,
84
+ n_features,
85
+ n_samples,
86
+ target_names,
87
+ w,
88
  )
 
89
 
90
 
91
  @app.cell(hide_code=True)
92
+ def _(mo):
93
+ mo.md(r"""Next, we embed each face image using a pre-trained FaceNet model (`InceptionResnetV1` trained on `vggface2`). This converts each image into a 512-dimensional vector. Since the original data is grayscale and flattened, we reshape, normalize, and convert it to RGB before feeding it through the model.""")
 
 
 
 
 
 
 
 
 
94
  return
95
 
96
 
97
+ @app.cell
98
+ def _(X, h, w):
99
+ from facenet_pytorch import InceptionResnetV1
100
+ from torchvision import transforms
101
+ from PIL import Image
102
+ import torch
103
+ import numpy as np
104
+
105
+ # Load FaceNet model
106
+ model = InceptionResnetV1(pretrained='vggface2').eval()
107
+
108
+ # Transform pipeline: grayscale β†’ RGB β†’ resize β†’ normalize
109
+ transform = transforms.Compose([
110
+ transforms.Resize((160, 160)),
111
+ transforms.ToTensor(),
112
+ transforms.Lambda(lambda x: x.repeat(3, 1, 1) if x.shape[0] == 1 else x),
113
+ transforms.Normalize([0.5], [0.5])
114
+ ])
115
+
116
+ # Embed a single flattened row from X
117
+ def embed_flat_row(flat):
118
+ img = flat.reshape(h, w)
119
+ img = (img * 255).astype(np.uint8)
120
+ pil = Image.fromarray(img).convert("L") # grayscale
121
+ tensor = transform(pil).unsqueeze(0)
122
+ with torch.no_grad():
123
+ return model(tensor).squeeze().numpy() # 512-dim
124
+
125
+ # Generate embeddings for all samples
126
+ embeddings = np.array([embed_flat_row(row) for row in X])
127
+ return (
128
+ Image,
129
+ InceptionResnetV1,
130
+ embed_flat_row,
131
+ embeddings,
132
+ model,
133
+ np,
134
+ torch,
135
+ transform,
136
+ transforms,
137
  )
 
138
 
139
 
140
  @app.cell
141
+ def _(mo):
142
+ mo.md(r"""Now that we have 512-dimensional embeddings, we reduce them to 2D for visualization. Both t-SNE and UMAP are available here β€” UMAP is active by default, but you can switch to t-SNE by uncommenting the alternate line. This step lets us inspect the structure of the embedding space:""")
143
  return
144
 
145
 
146
  @app.cell
147
+ def _(embeddings):
148
+ from sklearn.manifold import TSNE
149
+ import umap.umap_ as umap
 
150
 
151
+ # X_embedded = TSNE(n_components=2, perplexity=30, random_state=42).fit_transform(embeddings)
152
+ X_embedded = umap.UMAP(n_components=2, random_state=42).fit_transform(embeddings)
153
+ return TSNE, X_embedded, umap
 
154
 
155
 
156
  @app.cell
157
+ def _(mo):
158
+ mo.md(r"""We wrap the 2D embeddings into a Pandas DataFrame for easier manipulation and plotting. Each row includes x/y coordinates and the associated person ID, which we map to names. We then define a simple Altair scatterplot function to visualize the clustered embeddings by identity.""")
159
  return
160
 
161
 
162
  @app.cell
163
+ def _(X_embedded, Y, target_names):
164
+ import pandas as pd
 
 
 
 
 
 
 
 
165
 
166
+ embedding_df = pd.DataFrame({
167
+ "x": X_embedded[:, 0],
168
+ "y": X_embedded[:, 1],
169
+ "person": Y
170
+ }).reset_index()
171
+ embedding_df["name"] = embedding_df["person"].map(lambda i: target_names[i])
172
+ return embedding_df, pd
173
 
 
174
 
175
+ @app.cell
176
+ def _():
177
+ import altair as alt
178
+ def scatter(df):
179
+ return (alt.Chart(df)
180
+ .mark_circle()
181
+ .encode(
182
+ x=alt.X("x:Q"),
183
+ y=alt.Y("y:Q"),
184
+ color=alt.Color("name:N"),
185
+ ).properties(width=500, height=300))
186
+ return alt, scatter
187
 
188
 
189
  @app.cell(hide_code=True)
190
+ def _(mo):
191
+ mo.md(r"""Here's our 2D embedding space of world leader faces! Each point is a facial embedding projected with UMAP and colored by identity. Try selecting a cluster β€” the notebook will automatically reveal the associated images so you can explore what the model β€œthinks” belongs together.""")
 
 
 
 
 
 
 
 
 
 
 
192
  return
193
 
194
 
195
+ @app.cell
196
+ def _(embedding_df, scatter):
197
+ import marimo as mo
198
+ chart = mo.ui.altair_chart(scatter(embedding_df))
199
+ return chart, mo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
 
202
  @app.cell(hide_code=True)
203
+ def _(mo):
204
+ mo.md(r"""When you select points in the scatterplot, Marimo automatically passes those indices into this cell. Here, we render a preview of the corresponding face images using `matplotlib`, along with a table of all selected metadata β€” making it easy to inspect clustering quality or outliers at a glance.""")
 
 
 
 
 
 
205
  return
206
 
207
 
208
  @app.cell
209
+ def _(chart, mo):
210
+ table = mo.ui.table(chart.value)
211
+ return (table,)
212
 
213
 
214
+ @app.cell
215
+ def _(X, chart, h, mo, table, w):
216
+ def show_images(indices, max_images=6):
217
+ import matplotlib.pyplot as plt
218
+
219
+ indices = indices[:max_images]
220
+ images = X.reshape((-1, h, w))[indices]
221
+ fig, axes = plt.subplots(1, len(indices))
222
+ fig.set_size_inches(12.5, 1.5)
223
+ if len(indices) > 1:
224
+ for im, ax in zip(images, axes.flat):
225
+ ax.imshow(im, cmap="gray")
226
+ ax.set_yticks([])
227
+ ax.set_xticks([])
228
+ else:
229
+ axes.imshow(images[0], cmap="gray")
230
+ axes.set_yticks([])
231
+ axes.set_xticks([])
232
+ plt.tight_layout()
233
+ return fig
234
+
235
+ def show_selected():
236
+ return (
237
+ show_images(list(chart.value["index"]))
238
+ if not len(table.value)
239
+ else show_images(list(table.value["index"]))
240
+ )
241
 
242
+ mo.hstack([chart, show_selected() if len(chart.value) else ""])
243
+ return show_images, show_selected
 
 
 
 
 
 
 
 
 
244
 
245
 
246
+ @app.cell
247
+ def _():
248
+ return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
 
250
 
251
  if __name__ == "__main__":