File size: 5,172 Bytes
5b120a4
 
 
 
 
 
 
 
 
 
 
37429b9
 
4139d6f
5b120a4
37429b9
 
 
5b120a4
37429b9
5b120a4
 
 
 
 
4139d6f
 
 
 
 
 
 
 
 
 
37429b9
 
 
4139d6f
5b120a4
 
4139d6f
 
5b120a4
 
 
 
 
 
 
 
 
 
37429b9
 
 
4139d6f
 
 
 
37429b9
 
5b120a4
 
 
37429b9
 
 
34548a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b120a4
 
 
 
37429b9
34548a0
37429b9
 
5b120a4
 
 
37429b9
 
 
5b120a4
34548a0
5b120a4
37429b9
5b120a4
 
 
34548a0
37429b9
5b120a4
37429b9
 
 
5b120a4
 
 
37429b9
 
 
5b120a4
 
 
 
 
 
 
 
 
 
37429b9
 
 
 
4139d6f
 
 
 
 
 
 
 
 
 
 
 
5b120a4
 
4139d6f
37429b9
 
 
5b120a4
 
4139d6f
37429b9
 
 
 
5b120a4
4139d6f
 
 
 
34548a0
4139d6f
 
37429b9
 
 
 
4139d6f
c834fd5
37429b9
 
 
 
5b120a4
4139d6f
37429b9
 
 
 
5b120a4
4139d6f
 
 
 
 
 
 
37429b9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# /// script
# requires-python = ">=3.13"
# dependencies = [
#     "marimo",
#     "polars==1.29.0",
#     "pyarrow==20.0.0",
#     "pyiceberg==0.9.1",
#     "sqlalchemy==2.0.40",
# ]
# ///

import marimo

__generated_with = "0.13.8"
app = marimo.App(width="full")


@app.cell
def _():
    import marimo as mo
    import sqlalchemy
    import polars as pl
    from pathlib import Path
    from pyiceberg.partitioning import PartitionSpec, PartitionField
    from pyiceberg.transforms import IdentityTransform
    from zipfile import ZipFile
    return (
        IdentityTransform,
        PartitionField,
        PartitionSpec,
        Path,
        ZipFile,
        mo,
        pl,
    )


@app.cell
def _(Path):
    from pyiceberg.catalog import load_catalog

    Path("warehouse").mkdir(exist_ok=True, parents=True)

    warehouse_path = "warehouse"
    catalog = load_catalog(
        "default",
        **{
            'type': 'sql',
            "uri": f"sqlite:///{warehouse_path}/iceberg.db",
            "warehouse": f"file://{warehouse_path}",
        },
    )
    return (catalog,)


@app.cell
def _(ZipFile, pl):
    df_orig = pl.read_csv(ZipFile("yellow_tripdata_2015-01.csv.zip").open("yellow_tripdata_2015-01.csv").read())
    df_taxi = df_orig.to_arrow()
    return df_orig, df_taxi


@app.cell
def _(df_taxi):
    df_taxi.group_by("passenger_count").aggregate([([], "count_all")])
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Let's now take this pyarrow dataframe and prepare it for insertion. We want to extract the right schema and also add a partition.""")
    return


@app.cell
def _(df_taxi):
    import pyarrow as pa
    from pyiceberg.schema import Schema
    from pyiceberg.types import (
        NestedField, IntegerType, StringType, DoubleType, TimestampType
    )
    from pyiceberg.table.name_mapping import NameMapping, MappedField
    from pyiceberg.io.pyarrow import pyarrow_to_schema

    # Create a mapping from column names to field IDs
    name_mapping_fields = []
    for idx, field_name in enumerate(df_taxi.column_names, start=1):
        name_mapping_fields.append(MappedField(field_id=idx, names=[field_name]))

    # Create a name mapping
    name_mapping = NameMapping(name_mapping_fields)

    # Convert PyArrow schema to Iceberg schema
    iceberg_schema = pyarrow_to_schema(df_taxi.schema, name_mapping)

    # Now find the field ID for 'passenger_count'
    passenger_count_field = iceberg_schema.find_field("passenger_count")
    source_id = passenger_count_field.field_id

    print(f"The source_id for 'passenger_count' is: {source_id}")
    return


@app.cell
def _(IdentityTransform, PartitionField, PartitionSpec):
    spec = PartitionSpec(
        PartitionField(source_id=3, field_id=1000, name="passenger_count", transform=IdentityTransform())
    )
    return (spec,)


@app.cell
def _(df_taxi):
    df_taxi.schema
    return


@app.cell
def _(catalog, df_taxi, spec):
    catalog.create_namespace_if_not_exists("default")

    table = catalog.create_table_if_not_exists(
        "default.taxi",
        schema=df_taxi.schema,
        partition_spec=spec
    )
    return (table,)


@app.cell
def _(df_taxi, table):
    if not table.current_snapshot():
        table.append(df_taxi)
    return


@app.cell
def _(catalog):
    (
        catalog
            .load_table("default.taxi")
            .to_polars()
            .group_by("passenger_count")
            .len()
            .sort("passenger_count")
            .collect()
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""Let's write the original zipped file into a csv file. We can read this and perform the same query to compare speeds.""")
    return


@app.cell
def _(df_orig):
    df_orig.write_csv("taxi.csv")
    return


@app.cell
def _(pl):
    pl.scan_csv("taxi.csv").group_by("passenger_count").len().sort("passenger_count").collect()
    return


@app.cell
def _(pl):
    pl.read_csv("taxi.csv").group_by("passenger_count").len().sort("passenger_count")
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
    That's a bunch slower!

    A part of the reason is that iceberg had partitions in it, which is great, but the comparison with `read_csv` is a bit unfair. Let's convert the `.csv` file to `.parquet` and also add a partition in polars with statistics. You will now see that we get a similar performance.
    """
    )
    return


@app.cell
def _(df_orig):
    df_orig.write_parquet("taxi.parquet", partition_by=["passenger_count"], statistics=True)
    return


@app.cell
def _(pl):
    pl.scan_parquet("taxi.parquet").group_by("passenger_count").len().sort("passenger_count").collect()
    return


@app.cell
def _(pl):
    pl.read_parquet("taxi.parquet").group_by("passenger_count").len().sort("passenger_count")
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""So keep in mind that polars can for sure also speed things up if you are aware of what you are doing. But one nice thing about iceberg is that can be seen as a catalogue with *a bunch* of good habbits for performance later down the line.""")
    return


if __name__ == "__main__":
    app.run()