Spaces:
Running
Running
Merge pull request #89 from metaboulie/fp/applicatives
Browse files
functional_programming/06_applicatives.py
ADDED
|
@@ -0,0 +1,1161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.12"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "marimo",
|
| 5 |
+
# ]
|
| 6 |
+
# ///
|
| 7 |
+
|
| 8 |
+
import marimo
|
| 9 |
+
|
| 10 |
+
__generated_with = "0.12.4"
|
| 11 |
+
app = marimo.App(app_title="Applicative programming with effects")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@app.cell(hide_code=True)
|
| 15 |
+
def _(mo):
|
| 16 |
+
mo.md(
|
| 17 |
+
r"""
|
| 18 |
+
# Applicative programming with effects
|
| 19 |
+
|
| 20 |
+
`Applicative Functor` encapsulates certain sorts of *effectful* computations in a functionally pure way, and encourages an *applicative* programming style.
|
| 21 |
+
|
| 22 |
+
Applicative is a functor with application, providing operations to
|
| 23 |
+
|
| 24 |
+
+ embed pure expressions (`pure`), and
|
| 25 |
+
+ sequence computations and combine their results (`apply`).
|
| 26 |
+
|
| 27 |
+
In this notebook, you will learn:
|
| 28 |
+
|
| 29 |
+
1. How to view `applicative` as multi-functor.
|
| 30 |
+
2. How to use `lift` to simplify chaining application.
|
| 31 |
+
3. How to bring *effects* to the functional pure world.
|
| 32 |
+
4. How to view `applicative` as lax monoidal functor.
|
| 33 |
+
|
| 34 |
+
/// details | Notebook metadata
|
| 35 |
+
type: info
|
| 36 |
+
|
| 37 |
+
version: 0.1.2 | last modified: 2025-04-07 | author: [métaboulie](https://github.com/metaboulie)<br/>
|
| 38 |
+
|
| 39 |
+
///
|
| 40 |
+
"""
|
| 41 |
+
)
|
| 42 |
+
return
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@app.cell(hide_code=True)
|
| 46 |
+
def _(mo):
|
| 47 |
+
mo.md(
|
| 48 |
+
r"""
|
| 49 |
+
# The intuition: [Multifunctor](https://arxiv.org/pdf/2401.14286)
|
| 50 |
+
|
| 51 |
+
## Limitations of functor
|
| 52 |
+
|
| 53 |
+
Recall that functors abstract the idea of mapping a function over each element of a structure.
|
| 54 |
+
|
| 55 |
+
Suppose now that we wish to generalise this idea to allow functions with any number of arguments to be mapped, rather than being restricted to functions with a single argument. More precisely, suppose that we wish to define a hierarchy of `fmap` functions with the following types:
|
| 56 |
+
|
| 57 |
+
```haskell
|
| 58 |
+
fmap0 :: a -> f a
|
| 59 |
+
|
| 60 |
+
fmap1 :: (a -> b) -> f a -> f b
|
| 61 |
+
|
| 62 |
+
fmap2 :: (a -> b -> c) -> f a -> f b -> f c
|
| 63 |
+
|
| 64 |
+
fmap3 :: (a -> b -> c -> d) -> f a -> f b -> f c -> f d
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
And we have to declare a special version of the functor class for each case.
|
| 68 |
+
"""
|
| 69 |
+
)
|
| 70 |
+
return
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@app.cell(hide_code=True)
|
| 74 |
+
def _(mo):
|
| 75 |
+
mo.md(
|
| 76 |
+
r"""
|
| 77 |
+
## Defining Multifunctor
|
| 78 |
+
|
| 79 |
+
/// admonition
|
| 80 |
+
we use prefix `f` rather than `ap` to indicate *Applicative Functor*
|
| 81 |
+
///
|
| 82 |
+
|
| 83 |
+
As a result, we may want to define a single `Multifunctor` such that:
|
| 84 |
+
|
| 85 |
+
1. Lift a regular n-argument function into the context of functors
|
| 86 |
+
|
| 87 |
+
```python
|
| 88 |
+
# lift a regular 3-argument function `g`
|
| 89 |
+
g: Callable[[A, B, C], D]
|
| 90 |
+
# into the context of functors
|
| 91 |
+
fg: Callable[[Functor[A], Functor[B], Functor[C]], Functor[D]]
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
3. Apply it to n functor-wrapped values
|
| 95 |
+
|
| 96 |
+
```python
|
| 97 |
+
# fa: Functor[A], fb: Functor[B], fc: Functor[C]
|
| 98 |
+
fg(fa, fb, fc)
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
5. Get a single functor-wrapped result
|
| 102 |
+
|
| 103 |
+
```python
|
| 104 |
+
fd: Functor[D]
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
We will define a function `lift` such that
|
| 108 |
+
|
| 109 |
+
```python
|
| 110 |
+
fd = lift(g, fa, fb, fc)
|
| 111 |
+
```
|
| 112 |
+
"""
|
| 113 |
+
)
|
| 114 |
+
return
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
@app.cell(hide_code=True)
|
| 118 |
+
def _(mo):
|
| 119 |
+
mo.md(
|
| 120 |
+
r"""
|
| 121 |
+
## Pure, apply and lift
|
| 122 |
+
|
| 123 |
+
Traditionally, applicative functors are presented through two core operations:
|
| 124 |
+
|
| 125 |
+
1. `pure`: embeds an object (value or function) into the applicative functor
|
| 126 |
+
|
| 127 |
+
```python
|
| 128 |
+
# a -> F a
|
| 129 |
+
pure: Callable[[A], Applicative[A]]
|
| 130 |
+
# for example, if `a` is
|
| 131 |
+
a: A
|
| 132 |
+
# then we can have `fa` as
|
| 133 |
+
fa: Applicative[A] = pure(a)
|
| 134 |
+
# or if we have a regular function `g`
|
| 135 |
+
g: Callable[[A], B]
|
| 136 |
+
# then we can have `fg` as
|
| 137 |
+
fg: Applicative[Callable[[A], B]] = pure(g)
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
2. `apply`: applies a function inside an applicative functor to a value inside an applicative functor
|
| 141 |
+
|
| 142 |
+
```python
|
| 143 |
+
# F (a -> b) -> F a -> F b
|
| 144 |
+
apply: Callable[[Applicative[Callable[[A], B]], Applicative[A]], Applicative[B]]
|
| 145 |
+
# and we can have
|
| 146 |
+
fd = apply(apply(apply(fg, fa), fb), fc)
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
As a result,
|
| 151 |
+
|
| 152 |
+
```python
|
| 153 |
+
lift(g, fa, fb, fc) = apply(apply(apply(pure(g), fa), fb), fc)
|
| 154 |
+
```
|
| 155 |
+
"""
|
| 156 |
+
)
|
| 157 |
+
return
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
@app.cell(hide_code=True)
|
| 161 |
+
def _(mo):
|
| 162 |
+
mo.md(
|
| 163 |
+
r"""
|
| 164 |
+
/// admonition | How to use *Applicative* in the manner of *Multifunctor*
|
| 165 |
+
|
| 166 |
+
1. Define `pure` and `apply` for an `Applicative` subclass
|
| 167 |
+
|
| 168 |
+
- We can define them much easier compared with `lift`.
|
| 169 |
+
|
| 170 |
+
2. Use the `lift` method
|
| 171 |
+
|
| 172 |
+
- We can use it much more convenient compared with the combination of `pure` and `apply`.
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
///
|
| 176 |
+
|
| 177 |
+
/// attention | You can suppress the chaining application of `apply` and `pure` as:
|
| 178 |
+
|
| 179 |
+
```python
|
| 180 |
+
apply(pure(g), fa) -> lift(g, fa)
|
| 181 |
+
apply(apply(pure(g), fa), fb) -> lift(g, fa, fb)
|
| 182 |
+
apply(apply(apply(pure(g), fa), fb), fc) -> lift(g, fa, fb, fc)
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
///
|
| 186 |
+
"""
|
| 187 |
+
)
|
| 188 |
+
return
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
@app.cell(hide_code=True)
|
| 192 |
+
def _(mo):
|
| 193 |
+
mo.md(
|
| 194 |
+
r"""
|
| 195 |
+
## Abstracting applicatives
|
| 196 |
+
|
| 197 |
+
We can now provide an initial abstraction definition of applicatives:
|
| 198 |
+
|
| 199 |
+
```python
|
| 200 |
+
@dataclass
|
| 201 |
+
class Applicative[A](Functor, ABC):
|
| 202 |
+
@classmethod
|
| 203 |
+
@abstractmethod
|
| 204 |
+
def pure(cls, a: A) -> "Applicative[A]":
|
| 205 |
+
return NotImplementedError
|
| 206 |
+
|
| 207 |
+
@classmethod
|
| 208 |
+
@abstractmethod
|
| 209 |
+
def apply(
|
| 210 |
+
cls, fg: "Applicative[Callable[[A], B]]", fa: "Applicative[A]"
|
| 211 |
+
) -> "Applicative[B]":
|
| 212 |
+
return NotImplementedError
|
| 213 |
+
|
| 214 |
+
@classmethod
|
| 215 |
+
def lift(cls, f: Callable, *args: "Applicative") -> "Applicative":
|
| 216 |
+
curr = cls.pure(f)
|
| 217 |
+
if not args:
|
| 218 |
+
return curr
|
| 219 |
+
for arg in args:
|
| 220 |
+
curr = cls.apply(curr, arg)
|
| 221 |
+
return curr
|
| 222 |
+
```
|
| 223 |
+
|
| 224 |
+
/// attention | minimal implementation requirement
|
| 225 |
+
|
| 226 |
+
- `pure`
|
| 227 |
+
- `apply`
|
| 228 |
+
///
|
| 229 |
+
"""
|
| 230 |
+
)
|
| 231 |
+
return
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
@app.cell(hide_code=True)
|
| 235 |
+
def _(mo):
|
| 236 |
+
mo.md(r"""# Instances, laws and utility functions""")
|
| 237 |
+
return
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
@app.cell(hide_code=True)
|
| 241 |
+
def _(mo):
|
| 242 |
+
mo.md(
|
| 243 |
+
r"""
|
| 244 |
+
## Applicative instances
|
| 245 |
+
|
| 246 |
+
When we are actually implementing an *Applicative* instance, we can keep in mind that `pure` and `apply` fundamentally:
|
| 247 |
+
|
| 248 |
+
- embed an object (value or function) to the computational context
|
| 249 |
+
- apply a function inside the computation context to a value inside the computational context
|
| 250 |
+
"""
|
| 251 |
+
)
|
| 252 |
+
return
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
@app.cell(hide_code=True)
|
| 256 |
+
def _(mo):
|
| 257 |
+
mo.md(
|
| 258 |
+
r"""
|
| 259 |
+
### Wrapper
|
| 260 |
+
|
| 261 |
+
- `pure` should simply *wrap* an object, in the sense that:
|
| 262 |
+
|
| 263 |
+
```haskell
|
| 264 |
+
Wrapper.pure(1) => Wrapper(value=1)
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
- `apply` should apply a *wrapped* function to a *wrapped* value
|
| 268 |
+
|
| 269 |
+
The implementation is:
|
| 270 |
+
"""
|
| 271 |
+
)
|
| 272 |
+
return
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
@app.cell
|
| 276 |
+
def _(Applicative, dataclass):
|
| 277 |
+
@dataclass
|
| 278 |
+
class Wrapper[A](Applicative):
|
| 279 |
+
value: A
|
| 280 |
+
|
| 281 |
+
@classmethod
|
| 282 |
+
def pure(cls, a: A) -> "Wrapper[A]":
|
| 283 |
+
return cls(a)
|
| 284 |
+
|
| 285 |
+
@classmethod
|
| 286 |
+
def apply(
|
| 287 |
+
cls, fg: "Wrapper[Callable[[A], B]]", fa: "Wrapper[A]"
|
| 288 |
+
) -> "Wrapper[B]":
|
| 289 |
+
return cls(fg.value(fa.value))
|
| 290 |
+
return (Wrapper,)
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
@app.cell(hide_code=True)
|
| 294 |
+
def _(mo):
|
| 295 |
+
mo.md(r"""> try with Wrapper below""")
|
| 296 |
+
return
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
@app.cell
|
| 300 |
+
def _(Wrapper):
|
| 301 |
+
Wrapper.lift(
|
| 302 |
+
lambda a: lambda b: lambda c: a + b * c,
|
| 303 |
+
Wrapper(1),
|
| 304 |
+
Wrapper(2),
|
| 305 |
+
Wrapper(3),
|
| 306 |
+
)
|
| 307 |
+
return
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
@app.cell(hide_code=True)
|
| 311 |
+
def _(mo):
|
| 312 |
+
mo.md(
|
| 313 |
+
r"""
|
| 314 |
+
### List
|
| 315 |
+
|
| 316 |
+
- `pure` should wrap the object in a list, in the sense that:
|
| 317 |
+
|
| 318 |
+
```haskell
|
| 319 |
+
List.pure(1) => List(value=[1])
|
| 320 |
+
```
|
| 321 |
+
|
| 322 |
+
- `apply` should apply a list of functions to a list of values
|
| 323 |
+
- you can think of this as cartesian product, concatenating the result of applying every function to every value
|
| 324 |
+
|
| 325 |
+
The implementation is:
|
| 326 |
+
"""
|
| 327 |
+
)
|
| 328 |
+
return
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
@app.cell
|
| 332 |
+
def _(Applicative, dataclass, product):
|
| 333 |
+
@dataclass
|
| 334 |
+
class List[A](Applicative):
|
| 335 |
+
value: list[A]
|
| 336 |
+
|
| 337 |
+
@classmethod
|
| 338 |
+
def pure(cls, a: A) -> "List[A]":
|
| 339 |
+
return cls([a])
|
| 340 |
+
|
| 341 |
+
@classmethod
|
| 342 |
+
def apply(cls, fg: "List[Callable[[A], B]]", fa: "List[A]") -> "List[B]":
|
| 343 |
+
return cls([g(a) for g, a in product(fg.value, fa.value)])
|
| 344 |
+
return (List,)
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
@app.cell(hide_code=True)
|
| 348 |
+
def _(mo):
|
| 349 |
+
mo.md(r"""> try with List below""")
|
| 350 |
+
return
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
@app.cell
|
| 354 |
+
def _(List):
|
| 355 |
+
List.apply(
|
| 356 |
+
List([lambda a: a + 1, lambda a: a * 2]),
|
| 357 |
+
List([1, 2]),
|
| 358 |
+
)
|
| 359 |
+
return
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
@app.cell
|
| 363 |
+
def _(List):
|
| 364 |
+
List.lift(lambda a: lambda b: a + b, List([1, 2]), List([3, 4, 5]))
|
| 365 |
+
return
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
@app.cell(hide_code=True)
|
| 369 |
+
def _(mo):
|
| 370 |
+
mo.md(
|
| 371 |
+
r"""
|
| 372 |
+
### Maybe
|
| 373 |
+
|
| 374 |
+
- `pure` should wrap the object in a Maybe, in the sense that:
|
| 375 |
+
|
| 376 |
+
```haskell
|
| 377 |
+
Maybe.pure(1) => "Just 1"
|
| 378 |
+
Maybe.pure(None) => "Nothing"
|
| 379 |
+
```
|
| 380 |
+
|
| 381 |
+
- `apply` should apply a function maybe exist to a value maybe exist
|
| 382 |
+
- if the function is `None` or the value is `None`, simply returns `None`
|
| 383 |
+
- else apply the function to the value and wrap the result in `Just`
|
| 384 |
+
|
| 385 |
+
The implementation is:
|
| 386 |
+
"""
|
| 387 |
+
)
|
| 388 |
+
return
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
@app.cell
|
| 392 |
+
def _(Applicative, dataclass):
|
| 393 |
+
@dataclass
|
| 394 |
+
class Maybe[A](Applicative):
|
| 395 |
+
value: None | A
|
| 396 |
+
|
| 397 |
+
@classmethod
|
| 398 |
+
def pure(cls, a: A) -> "Maybe[A]":
|
| 399 |
+
return cls(a)
|
| 400 |
+
|
| 401 |
+
@classmethod
|
| 402 |
+
def apply(
|
| 403 |
+
cls, fg: "Maybe[Callable[[A], B]]", fa: "Maybe[A]"
|
| 404 |
+
) -> "Maybe[B]":
|
| 405 |
+
if fg.value is None or fa.value is None:
|
| 406 |
+
return cls(None)
|
| 407 |
+
|
| 408 |
+
return cls(fg.value(fa.value))
|
| 409 |
+
|
| 410 |
+
def __repr__(self):
|
| 411 |
+
return "Nothing" if self.value is None else f"Just({self.value!r})"
|
| 412 |
+
return (Maybe,)
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
@app.cell(hide_code=True)
|
| 416 |
+
def _(mo):
|
| 417 |
+
mo.md(r"""> try with Maybe below""")
|
| 418 |
+
return
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
@app.cell
|
| 422 |
+
def _(Maybe):
|
| 423 |
+
Maybe.lift(
|
| 424 |
+
lambda a: lambda b: a + b,
|
| 425 |
+
Maybe(1),
|
| 426 |
+
Maybe(2),
|
| 427 |
+
)
|
| 428 |
+
return
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
@app.cell
|
| 432 |
+
def _(Maybe):
|
| 433 |
+
Maybe.lift(
|
| 434 |
+
lambda a: lambda b: None,
|
| 435 |
+
Maybe(1),
|
| 436 |
+
Maybe(2),
|
| 437 |
+
)
|
| 438 |
+
return
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
@app.cell(hide_code=True)
|
| 442 |
+
def _(mo):
|
| 443 |
+
mo.md(
|
| 444 |
+
r"""
|
| 445 |
+
## Collect the list of response with sequenceL
|
| 446 |
+
|
| 447 |
+
One often wants to execute a list of commands and collect the list of their response, and we can define a function `sequenceL` for this
|
| 448 |
+
|
| 449 |
+
/// admonition
|
| 450 |
+
In a further notebook about `Traversable`, we will have a more generic `sequence` that execute a **sequence** of commands and collect the **sequence** of their response, which is not limited to `list`.
|
| 451 |
+
///
|
| 452 |
+
|
| 453 |
+
```python
|
| 454 |
+
@classmethod
|
| 455 |
+
def sequenceL(cls, fas: list["Applicative[A]"]) -> "Applicative[list[A]]":
|
| 456 |
+
if not fas:
|
| 457 |
+
return cls.pure([])
|
| 458 |
+
|
| 459 |
+
return cls.apply(
|
| 460 |
+
cls.fmap(lambda v: lambda vs: [v] + vs, fas[0]),
|
| 461 |
+
cls.sequenceL(fas[1:]),
|
| 462 |
+
)
|
| 463 |
+
```
|
| 464 |
+
|
| 465 |
+
Let's try `sequenceL` with the instances.
|
| 466 |
+
"""
|
| 467 |
+
)
|
| 468 |
+
return
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
@app.cell
|
| 472 |
+
def _(Wrapper):
|
| 473 |
+
Wrapper.sequenceL([Wrapper(1), Wrapper(2), Wrapper(3)])
|
| 474 |
+
return
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
@app.cell(hide_code=True)
|
| 478 |
+
def _(mo):
|
| 479 |
+
mo.md(
|
| 480 |
+
r"""
|
| 481 |
+
/// attention
|
| 482 |
+
For the `Maybe` Applicative, the presence of any `Nothing` causes the entire computation to return Nothing.
|
| 483 |
+
///
|
| 484 |
+
"""
|
| 485 |
+
)
|
| 486 |
+
return
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
@app.cell
|
| 490 |
+
def _(Maybe):
|
| 491 |
+
Maybe.sequenceL([Maybe(1), Maybe(2), Maybe(None), Maybe(3)])
|
| 492 |
+
return
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
@app.cell(hide_code=True)
|
| 496 |
+
def _(mo):
|
| 497 |
+
mo.md(r"""The result of `sequenceL` for `List Applicative` is the Cartesian product of the input lists, yielding all possible ordered combinations of elements from each list.""")
|
| 498 |
+
return
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
@app.cell
|
| 502 |
+
def _(List):
|
| 503 |
+
List.sequenceL([List([1, 2]), List([3]), List([5, 6, 7])])
|
| 504 |
+
return
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
@app.cell(hide_code=True)
|
| 508 |
+
def _(mo):
|
| 509 |
+
mo.md(
|
| 510 |
+
r"""
|
| 511 |
+
## Applicative laws
|
| 512 |
+
|
| 513 |
+
/// admonition | id and compose
|
| 514 |
+
|
| 515 |
+
Remember that
|
| 516 |
+
|
| 517 |
+
- `id = lambda x: x`
|
| 518 |
+
- `compose = lambda f: lambda g: lambda x: f(g(x))`
|
| 519 |
+
|
| 520 |
+
///
|
| 521 |
+
|
| 522 |
+
Traditionally, there are four laws that `Applicative` instances should satisfy. In some sense, they are all concerned with making sure that `pure` deserves its name:
|
| 523 |
+
|
| 524 |
+
- The identity law:
|
| 525 |
+
```python
|
| 526 |
+
# fa: Applicative[A]
|
| 527 |
+
apply(pure(id), fa) = fa
|
| 528 |
+
```
|
| 529 |
+
- Homomorphism:
|
| 530 |
+
```python
|
| 531 |
+
# a: A
|
| 532 |
+
# g: Callable[[A], B]
|
| 533 |
+
apply(pure(g), pure(a)) = pure(g(a))
|
| 534 |
+
```
|
| 535 |
+
Intuitively, applying a non-effectful function to a non-effectful argument in an effectful context is the same as just applying the function to the argument and then injecting the result into the context with pure.
|
| 536 |
+
- Interchange:
|
| 537 |
+
```python
|
| 538 |
+
# a: A
|
| 539 |
+
# fg: Applicative[Callable[[A], B]]
|
| 540 |
+
apply(fg, pure(a)) = apply(pure(lambda g: g(a)), fg)
|
| 541 |
+
```
|
| 542 |
+
Intuitively, this says that when evaluating the application of an effectful function to a pure argument, the order in which we evaluate the function and its argument doesn't matter.
|
| 543 |
+
- Composition:
|
| 544 |
+
```python
|
| 545 |
+
# fg: Applicative[Callable[[B], C]]
|
| 546 |
+
# fh: Applicative[Callable[[A], B]]
|
| 547 |
+
# fa: Applicative[A]
|
| 548 |
+
apply(fg, apply(fh, fa)) = lift(compose, fg, fh, fa)
|
| 549 |
+
```
|
| 550 |
+
This one is the trickiest law to gain intuition for. In some sense it is expressing a sort of associativity property of `apply`.
|
| 551 |
+
|
| 552 |
+
We can add 4 helper functions to `Applicative` to check whether an instance respects the laws or not:
|
| 553 |
+
|
| 554 |
+
```python
|
| 555 |
+
@dataclass
|
| 556 |
+
class Applicative[A](Functor, ABC):
|
| 557 |
+
|
| 558 |
+
@classmethod
|
| 559 |
+
def check_identity(cls, fa: "Applicative[A]"):
|
| 560 |
+
if cls.lift(id, fa) != fa:
|
| 561 |
+
raise ValueError("Instance violates identity law")
|
| 562 |
+
return True
|
| 563 |
+
|
| 564 |
+
@classmethod
|
| 565 |
+
def check_homomorphism(cls, a: A, f: Callable[[A], B]):
|
| 566 |
+
if cls.lift(f, cls.pure(a)) != cls.pure(f(a)):
|
| 567 |
+
raise ValueError("Instance violates homomorphism law")
|
| 568 |
+
return True
|
| 569 |
+
|
| 570 |
+
@classmethod
|
| 571 |
+
def check_interchange(cls, a: A, fg: "Applicative[Callable[[A], B]]"):
|
| 572 |
+
if cls.apply(fg, cls.pure(a)) != cls.lift(lambda g: g(a), fg):
|
| 573 |
+
raise ValueError("Instance violates interchange law")
|
| 574 |
+
return True
|
| 575 |
+
|
| 576 |
+
@classmethod
|
| 577 |
+
def check_composition(
|
| 578 |
+
cls,
|
| 579 |
+
fg: "Applicative[Callable[[B], C]]",
|
| 580 |
+
fh: "Applicative[Callable[[A], B]]",
|
| 581 |
+
fa: "Applicative[A]",
|
| 582 |
+
):
|
| 583 |
+
if cls.apply(fg, cls.apply(fh, fa)) != cls.lift(compose, fg, fh, fa):
|
| 584 |
+
raise ValueError("Instance violates composition law")
|
| 585 |
+
return True
|
| 586 |
+
```
|
| 587 |
+
|
| 588 |
+
> Try to validate applicative laws below
|
| 589 |
+
"""
|
| 590 |
+
)
|
| 591 |
+
return
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
@app.cell
|
| 595 |
+
def _():
|
| 596 |
+
id = lambda x: x
|
| 597 |
+
compose = lambda f: lambda g: lambda x: f(g(x))
|
| 598 |
+
const = lambda a: lambda _: a
|
| 599 |
+
return compose, const, id
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
@app.cell
|
| 603 |
+
def _(List, Wrapper):
|
| 604 |
+
print("Checking Wrapper")
|
| 605 |
+
print(Wrapper.check_identity(Wrapper.pure(1)))
|
| 606 |
+
print(Wrapper.check_homomorphism(1, lambda x: x + 1))
|
| 607 |
+
print(Wrapper.check_interchange(1, Wrapper.pure(lambda x: x + 1)))
|
| 608 |
+
print(
|
| 609 |
+
Wrapper.check_composition(
|
| 610 |
+
Wrapper.pure(lambda x: x * 2),
|
| 611 |
+
Wrapper.pure(lambda x: x + 0.1),
|
| 612 |
+
Wrapper.pure(1),
|
| 613 |
+
)
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
print("\nChecking List")
|
| 617 |
+
print(List.check_identity(List.pure(1)))
|
| 618 |
+
print(List.check_homomorphism(1, lambda x: x + 1))
|
| 619 |
+
print(List.check_interchange(1, List.pure(lambda x: x + 1)))
|
| 620 |
+
print(
|
| 621 |
+
List.check_composition(
|
| 622 |
+
List.pure(lambda x: x * 2), List.pure(lambda x: x + 0.1), List.pure(1)
|
| 623 |
+
)
|
| 624 |
+
)
|
| 625 |
+
return
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
@app.cell(hide_code=True)
|
| 629 |
+
def _(mo):
|
| 630 |
+
mo.md(
|
| 631 |
+
r"""
|
| 632 |
+
## Utility functions
|
| 633 |
+
|
| 634 |
+
/// attention | using `fmap`
|
| 635 |
+
`fmap` is defined automatically using `pure` and `apply`, so you can use `fmap` with any `Applicative`
|
| 636 |
+
///
|
| 637 |
+
|
| 638 |
+
```python
|
| 639 |
+
@dataclass
|
| 640 |
+
class Applicative[A](Functor, ABC):
|
| 641 |
+
@classmethod
|
| 642 |
+
def skip(
|
| 643 |
+
cls, fa: "Applicative[A]", fb: "Applicative[B]"
|
| 644 |
+
) -> "Applicative[B]":
|
| 645 |
+
'''
|
| 646 |
+
Sequences the effects of two Applicative computations,
|
| 647 |
+
but discards the result of the first.
|
| 648 |
+
'''
|
| 649 |
+
return cls.apply(cls.const(fa, id), fb)
|
| 650 |
+
|
| 651 |
+
@classmethod
|
| 652 |
+
def keep(
|
| 653 |
+
cls, fa: "Applicative[A]", fb: "Applicative[B]"
|
| 654 |
+
) -> "Applicative[B]":
|
| 655 |
+
'''
|
| 656 |
+
Sequences the effects of two Applicative computations,
|
| 657 |
+
but discard the result of the second.
|
| 658 |
+
'''
|
| 659 |
+
return cls.lift(const, fa, fb)
|
| 660 |
+
|
| 661 |
+
@classmethod
|
| 662 |
+
def revapp(
|
| 663 |
+
cls, fa: "Applicative[A]", fg: "Applicative[Callable[[A], [B]]]"
|
| 664 |
+
) -> "Applicative[B]":
|
| 665 |
+
'''
|
| 666 |
+
The first computation produces values which are provided
|
| 667 |
+
as input to the function(s) produced by the second computation.
|
| 668 |
+
'''
|
| 669 |
+
return cls.lift(lambda a: lambda f: f(a), fa, fg)
|
| 670 |
+
```
|
| 671 |
+
|
| 672 |
+
- `skip` sequences the effects of two Applicative computations, but **discards the result of the first**. For example, if `m1` and `m2` are instances of type `Maybe[Int]`, then `Maybe.skip(m1, m2)` is `Nothing` whenever either `m1` or `m2` is `Nothing`; but if not, it will have the same value as `m2`.
|
| 673 |
+
- Likewise, `keep` sequences the effects of two computations, but **keeps only the result of the first**.
|
| 674 |
+
- `revapp` is similar to `apply`, but where the first computation produces value(s) which are provided as input to the function(s) produced by the second computation.
|
| 675 |
+
"""
|
| 676 |
+
)
|
| 677 |
+
return
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
@app.cell(hide_code=True)
|
| 681 |
+
def _(mo):
|
| 682 |
+
mo.md(
|
| 683 |
+
r"""
|
| 684 |
+
/// admonition | exercise
|
| 685 |
+
Try to use utility functions with different instances
|
| 686 |
+
///
|
| 687 |
+
"""
|
| 688 |
+
)
|
| 689 |
+
return
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
@app.cell(hide_code=True)
|
| 693 |
+
def _(mo):
|
| 694 |
+
mo.md(
|
| 695 |
+
r"""
|
| 696 |
+
# Formal implementation of Applicative
|
| 697 |
+
|
| 698 |
+
Now, we can give the formal implementation of `Applicative`
|
| 699 |
+
"""
|
| 700 |
+
)
|
| 701 |
+
return
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
@app.cell
|
| 705 |
+
def _(
|
| 706 |
+
ABC,
|
| 707 |
+
B,
|
| 708 |
+
Callable,
|
| 709 |
+
Functor,
|
| 710 |
+
abstractmethod,
|
| 711 |
+
compose,
|
| 712 |
+
const,
|
| 713 |
+
dataclass,
|
| 714 |
+
id,
|
| 715 |
+
):
|
| 716 |
+
@dataclass
|
| 717 |
+
class Applicative[A](Functor, ABC):
|
| 718 |
+
@classmethod
|
| 719 |
+
@abstractmethod
|
| 720 |
+
def pure(cls, a: A) -> "Applicative[A]":
|
| 721 |
+
"""Lift a value into the Structure."""
|
| 722 |
+
return NotImplementedError
|
| 723 |
+
|
| 724 |
+
@classmethod
|
| 725 |
+
@abstractmethod
|
| 726 |
+
def apply(
|
| 727 |
+
cls, fg: "Applicative[Callable[[A], B]]", fa: "Applicative[A]"
|
| 728 |
+
) -> "Applicative[B]":
|
| 729 |
+
"""Sequential application."""
|
| 730 |
+
return NotImplementedError
|
| 731 |
+
|
| 732 |
+
@classmethod
|
| 733 |
+
def lift(cls, f: Callable, *args: "Applicative") -> "Applicative":
|
| 734 |
+
"""Lift a function of arbitrary arity to work with values in applicative context."""
|
| 735 |
+
curr = cls.pure(f)
|
| 736 |
+
|
| 737 |
+
if not args:
|
| 738 |
+
return curr
|
| 739 |
+
|
| 740 |
+
for arg in args:
|
| 741 |
+
curr = cls.apply(curr, arg)
|
| 742 |
+
|
| 743 |
+
return curr
|
| 744 |
+
|
| 745 |
+
@classmethod
|
| 746 |
+
def fmap(
|
| 747 |
+
cls, f: Callable[[A], B], fa: "Applicative[A]"
|
| 748 |
+
) -> "Applicative[B]":
|
| 749 |
+
return cls.lift(f, fa)
|
| 750 |
+
|
| 751 |
+
@classmethod
|
| 752 |
+
def sequenceL(cls, fas: list["Applicative[A]"]) -> "Applicative[list[A]]":
|
| 753 |
+
"""
|
| 754 |
+
Execute a list of commands and collect the list of their response.
|
| 755 |
+
"""
|
| 756 |
+
if not fas:
|
| 757 |
+
return cls.pure([])
|
| 758 |
+
|
| 759 |
+
return cls.apply(
|
| 760 |
+
cls.fmap(lambda v: lambda vs: [v] + vs, fas[0]),
|
| 761 |
+
cls.sequenceL(fas[1:]),
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
@classmethod
|
| 765 |
+
def skip(
|
| 766 |
+
cls, fa: "Applicative[A]", fb: "Applicative[B]"
|
| 767 |
+
) -> "Applicative[B]":
|
| 768 |
+
"""
|
| 769 |
+
Sequences the effects of two Applicative computations,
|
| 770 |
+
but discards the result of the first.
|
| 771 |
+
"""
|
| 772 |
+
return cls.apply(cls.const(fa, id), fb)
|
| 773 |
+
|
| 774 |
+
@classmethod
|
| 775 |
+
def keep(
|
| 776 |
+
cls, fa: "Applicative[A]", fb: "Applicative[B]"
|
| 777 |
+
) -> "Applicative[B]":
|
| 778 |
+
"""
|
| 779 |
+
Sequences the effects of two Applicative computations,
|
| 780 |
+
but discard the result of the second.
|
| 781 |
+
"""
|
| 782 |
+
return cls.lift(const, fa, fb)
|
| 783 |
+
|
| 784 |
+
@classmethod
|
| 785 |
+
def revapp(
|
| 786 |
+
cls, fa: "Applicative[A]", fg: "Applicative[Callable[[A], [B]]]"
|
| 787 |
+
) -> "Applicative[B]":
|
| 788 |
+
"""
|
| 789 |
+
The first computation produces values which are provided
|
| 790 |
+
as input to the function(s) produced by the second computation.
|
| 791 |
+
"""
|
| 792 |
+
return cls.lift(lambda a: lambda f: f(a), fa, fg)
|
| 793 |
+
|
| 794 |
+
@classmethod
|
| 795 |
+
def check_identity(cls, fa: "Applicative[A]"):
|
| 796 |
+
if cls.lift(id, fa) != fa:
|
| 797 |
+
raise ValueError("Instance violates identity law")
|
| 798 |
+
return True
|
| 799 |
+
|
| 800 |
+
@classmethod
|
| 801 |
+
def check_homomorphism(cls, a: A, f: Callable[[A], B]):
|
| 802 |
+
if cls.lift(f, cls.pure(a)) != cls.pure(f(a)):
|
| 803 |
+
raise ValueError("Instance violates homomorphism law")
|
| 804 |
+
return True
|
| 805 |
+
|
| 806 |
+
@classmethod
|
| 807 |
+
def check_interchange(cls, a: A, fg: "Applicative[Callable[[A], B]]"):
|
| 808 |
+
if cls.apply(fg, cls.pure(a)) != cls.lift(lambda g: g(a), fg):
|
| 809 |
+
raise ValueError("Instance violates interchange law")
|
| 810 |
+
return True
|
| 811 |
+
|
| 812 |
+
@classmethod
|
| 813 |
+
def check_composition(
|
| 814 |
+
cls,
|
| 815 |
+
fg: "Applicative[Callable[[B], C]]",
|
| 816 |
+
fh: "Applicative[Callable[[A], B]]",
|
| 817 |
+
fa: "Applicative[A]",
|
| 818 |
+
):
|
| 819 |
+
if cls.apply(fg, cls.apply(fh, fa)) != cls.lift(compose, fg, fh, fa):
|
| 820 |
+
raise ValueError("Instance violates composition law")
|
| 821 |
+
return True
|
| 822 |
+
return (Applicative,)
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
@app.cell(hide_code=True)
|
| 826 |
+
def _(mo):
|
| 827 |
+
mo.md(
|
| 828 |
+
r"""
|
| 829 |
+
# Effectful programming
|
| 830 |
+
|
| 831 |
+
Our original motivation for applicatives was the desire to generalise the idea of mapping to functions with multiple arguments. This is a valid interpretation of the concept of applicatives, but from the three instances we have seen it becomes clear that there is also another, more abstract view.
|
| 832 |
+
|
| 833 |
+
The arguments are no longer just plain values but may also have effects, such as the possibility of failure, having many ways to succeed, or performing input/output actions. In this manner, applicative functors can also be viewed as abstracting the idea of **applying pure functions to effectful arguments**, with the precise form of effects that are permitted depending on the nature of the underlying functor.
|
| 834 |
+
"""
|
| 835 |
+
)
|
| 836 |
+
return
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
@app.cell(hide_code=True)
|
| 840 |
+
def _(mo):
|
| 841 |
+
mo.md(
|
| 842 |
+
r"""
|
| 843 |
+
## The IO Applicative
|
| 844 |
+
|
| 845 |
+
We will try to define an `IO` applicative here.
|
| 846 |
+
|
| 847 |
+
As before, we first abstract how `pure` and `apply` should function.
|
| 848 |
+
|
| 849 |
+
- `pure` should wrap the object in an IO action, and make the object *callable* if it's not because we want to perform the action later:
|
| 850 |
+
|
| 851 |
+
```haskell
|
| 852 |
+
IO.pure(1) => IO(effect=lambda: 1)
|
| 853 |
+
IO.pure(f) => IO(effect=f)
|
| 854 |
+
```
|
| 855 |
+
|
| 856 |
+
- `apply` should perform an action that produces a value, then apply the function with the value
|
| 857 |
+
|
| 858 |
+
The implementation is:
|
| 859 |
+
"""
|
| 860 |
+
)
|
| 861 |
+
return
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
@app.cell
|
| 865 |
+
def _(Applicative, Callable, dataclass):
|
| 866 |
+
@dataclass
|
| 867 |
+
class IO(Applicative):
|
| 868 |
+
effect: Callable
|
| 869 |
+
|
| 870 |
+
def __call__(self):
|
| 871 |
+
return self.effect()
|
| 872 |
+
|
| 873 |
+
@classmethod
|
| 874 |
+
def pure(cls, a):
|
| 875 |
+
return cls(a) if isinstance(a, Callable) else IO(lambda: a)
|
| 876 |
+
|
| 877 |
+
@classmethod
|
| 878 |
+
def apply(cls, fg, fa):
|
| 879 |
+
return cls.pure(fg.effect(fa.effect()))
|
| 880 |
+
return (IO,)
|
| 881 |
+
|
| 882 |
+
|
| 883 |
+
@app.cell(hide_code=True)
|
| 884 |
+
def _(mo):
|
| 885 |
+
mo.md(r"""For example, a function that reads a given number of lines from the keyboard can be defined in applicative style as follows:""")
|
| 886 |
+
return
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
@app.cell
|
| 890 |
+
def _(IO):
|
| 891 |
+
def get_chars(n: int = 3):
|
| 892 |
+
return IO.sequenceL(
|
| 893 |
+
[IO.pure(input(f"input the {i}th str")) for i in range(1, n + 1)]
|
| 894 |
+
)
|
| 895 |
+
return (get_chars,)
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
@app.cell
|
| 899 |
+
def _():
|
| 900 |
+
# get_chars()()
|
| 901 |
+
return
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
@app.cell(hide_code=True)
|
| 905 |
+
def _(mo):
|
| 906 |
+
mo.md(r"""# From the perspective of category theory""")
|
| 907 |
+
return
|
| 908 |
+
|
| 909 |
+
|
| 910 |
+
@app.cell(hide_code=True)
|
| 911 |
+
def _(mo):
|
| 912 |
+
mo.md(
|
| 913 |
+
r"""
|
| 914 |
+
## Lax Monoidal Functor
|
| 915 |
+
|
| 916 |
+
An alternative, equivalent formulation of `Applicative` is given by
|
| 917 |
+
"""
|
| 918 |
+
)
|
| 919 |
+
return
|
| 920 |
+
|
| 921 |
+
|
| 922 |
+
@app.cell
|
| 923 |
+
def _(ABC, Functor, abstractmethod, dataclass):
|
| 924 |
+
@dataclass
|
| 925 |
+
class Monoidal[A](Functor, ABC):
|
| 926 |
+
@classmethod
|
| 927 |
+
@abstractmethod
|
| 928 |
+
def unit(cls) -> "Monoidal[Tuple[()]]":
|
| 929 |
+
pass
|
| 930 |
+
|
| 931 |
+
@classmethod
|
| 932 |
+
@abstractmethod
|
| 933 |
+
def tensor(
|
| 934 |
+
cls, this: "Monoidal[A]", other: "Monoidal[B]"
|
| 935 |
+
) -> "Monoidal[Tuple[A, B]]":
|
| 936 |
+
pass
|
| 937 |
+
return (Monoidal,)
|
| 938 |
+
|
| 939 |
+
|
| 940 |
+
@app.cell(hide_code=True)
|
| 941 |
+
def _(mo):
|
| 942 |
+
mo.md(
|
| 943 |
+
r"""
|
| 944 |
+
Intuitively, this states that a *monoidal functor* is one which has some sort of "default shape" and which supports some sort of "combining" operation.
|
| 945 |
+
|
| 946 |
+
- `unit` provides the identity element
|
| 947 |
+
- `tensor` combines two contexts into a product context
|
| 948 |
+
|
| 949 |
+
More technically, the idea is that `monoidal functor` preserves the "monoidal structure" given by the pairing constructor `(,)` and unit type `()`.
|
| 950 |
+
"""
|
| 951 |
+
)
|
| 952 |
+
return
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
@app.cell(hide_code=True)
|
| 956 |
+
def _(mo):
|
| 957 |
+
mo.md(
|
| 958 |
+
r"""
|
| 959 |
+
Furthermore, to deserve the name "monoidal", instances of Monoidal ought to satisfy the following laws, which seem much more straightforward than the traditional Applicative laws:
|
| 960 |
+
|
| 961 |
+
- Left identity
|
| 962 |
+
|
| 963 |
+
`tensor(unit, v) ≅ v`
|
| 964 |
+
|
| 965 |
+
- Right identity
|
| 966 |
+
|
| 967 |
+
`tensor(u, unit) ≅ u`
|
| 968 |
+
|
| 969 |
+
- Associativity
|
| 970 |
+
|
| 971 |
+
`tensor(u, tensor(v, w)) ≅ tensor(tensor(u, v), w)`
|
| 972 |
+
"""
|
| 973 |
+
)
|
| 974 |
+
return
|
| 975 |
+
|
| 976 |
+
|
| 977 |
+
@app.cell(hide_code=True)
|
| 978 |
+
def _(mo):
|
| 979 |
+
mo.md(
|
| 980 |
+
r"""
|
| 981 |
+
/// admonition | ≅ indicates isomorphism
|
| 982 |
+
|
| 983 |
+
`≅` refers to *isomorphism* rather than equality.
|
| 984 |
+
|
| 985 |
+
In particular we consider `(x, ()) ≅ x ≅ ((), x)` and `((x, y), z) ≅ (x, (y, z))`
|
| 986 |
+
|
| 987 |
+
///
|
| 988 |
+
"""
|
| 989 |
+
)
|
| 990 |
+
return
|
| 991 |
+
|
| 992 |
+
|
| 993 |
+
@app.cell(hide_code=True)
|
| 994 |
+
def _(mo):
|
| 995 |
+
mo.md(
|
| 996 |
+
r"""
|
| 997 |
+
## Mutual definability of Monoidal and Applicative
|
| 998 |
+
|
| 999 |
+
We can implement `pure` and `apply` in terms of `unit` and `tensor`, and vice versa.
|
| 1000 |
+
|
| 1001 |
+
```python
|
| 1002 |
+
pure(a) = fmap((lambda _: a), unit)
|
| 1003 |
+
apply(fg, fa) = fmap((lambda pair: pair[0](pair[1])), tensor(fg, fa))
|
| 1004 |
+
```
|
| 1005 |
+
|
| 1006 |
+
```python
|
| 1007 |
+
unit() = pure(())
|
| 1008 |
+
tensor(fa, fb) = lift(lambda fa: lambda fb: (fa, fb), fa, fb)
|
| 1009 |
+
```
|
| 1010 |
+
"""
|
| 1011 |
+
)
|
| 1012 |
+
return
|
| 1013 |
+
|
| 1014 |
+
|
| 1015 |
+
@app.cell(hide_code=True)
|
| 1016 |
+
def _(mo):
|
| 1017 |
+
mo.md(
|
| 1018 |
+
r"""
|
| 1019 |
+
## Instance: ListMonoidal
|
| 1020 |
+
|
| 1021 |
+
- `unit` should simply return a empty tuple wrapper in a list
|
| 1022 |
+
|
| 1023 |
+
```haskell
|
| 1024 |
+
ListMonoidal.unit() => [()]
|
| 1025 |
+
```
|
| 1026 |
+
|
| 1027 |
+
- `tensor` should return the *cartesian product* of the items of 2 ListMonoidal instances
|
| 1028 |
+
|
| 1029 |
+
The implementation is:
|
| 1030 |
+
"""
|
| 1031 |
+
)
|
| 1032 |
+
return
|
| 1033 |
+
|
| 1034 |
+
|
| 1035 |
+
@app.cell
|
| 1036 |
+
def _(B, Callable, Monoidal, dataclass, product):
|
| 1037 |
+
@dataclass
|
| 1038 |
+
class ListMonoidal[A](Monoidal):
|
| 1039 |
+
items: list[A]
|
| 1040 |
+
|
| 1041 |
+
@classmethod
|
| 1042 |
+
def unit(cls) -> "ListMonoidal[Tuple[()]]":
|
| 1043 |
+
return cls([()])
|
| 1044 |
+
|
| 1045 |
+
@classmethod
|
| 1046 |
+
def tensor(
|
| 1047 |
+
cls, this: "ListMonoidal[A]", other: "ListMonoidal[B]"
|
| 1048 |
+
) -> "ListMonoidal[Tuple[A, B]]":
|
| 1049 |
+
return cls(list(product(this.items, other.items)))
|
| 1050 |
+
|
| 1051 |
+
@classmethod
|
| 1052 |
+
def fmap(
|
| 1053 |
+
cls, f: Callable[[A], B], ma: "ListMonoidal[A]"
|
| 1054 |
+
) -> "ListMonoidal[B]":
|
| 1055 |
+
return cls([f(a) for a in ma.items])
|
| 1056 |
+
return (ListMonoidal,)
|
| 1057 |
+
|
| 1058 |
+
|
| 1059 |
+
@app.cell(hide_code=True)
|
| 1060 |
+
def _(mo):
|
| 1061 |
+
mo.md(r"""> try with `ListMonoidal` below""")
|
| 1062 |
+
return
|
| 1063 |
+
|
| 1064 |
+
|
| 1065 |
+
@app.cell
|
| 1066 |
+
def _(ListMonoidal):
|
| 1067 |
+
xs = ListMonoidal([1, 2])
|
| 1068 |
+
ys = ListMonoidal(["a", "b"])
|
| 1069 |
+
ListMonoidal.tensor(xs, ys)
|
| 1070 |
+
return xs, ys
|
| 1071 |
+
|
| 1072 |
+
|
| 1073 |
+
@app.cell(hide_code=True)
|
| 1074 |
+
def _(mo):
|
| 1075 |
+
mo.md(r"""and we can prove that `tensor(fa, fb) = lift(lambda fa: lambda fb: (fa, fb), fa, fb)`:""")
|
| 1076 |
+
return
|
| 1077 |
+
|
| 1078 |
+
|
| 1079 |
+
@app.cell
|
| 1080 |
+
def _(List, xs, ys):
|
| 1081 |
+
List.lift(lambda fa: lambda fb: (fa, fb), List(xs.items), List(ys.items))
|
| 1082 |
+
return
|
| 1083 |
+
|
| 1084 |
+
|
| 1085 |
+
@app.cell(hide_code=True)
|
| 1086 |
+
def _(ABC, B, Callable, abstractmethod, dataclass):
|
| 1087 |
+
@dataclass
|
| 1088 |
+
class Functor[A](ABC):
|
| 1089 |
+
@classmethod
|
| 1090 |
+
@abstractmethod
|
| 1091 |
+
def fmap(cls, f: Callable[[A], B], a: "Functor[A]") -> "Functor[B]":
|
| 1092 |
+
return NotImplementedError
|
| 1093 |
+
|
| 1094 |
+
@classmethod
|
| 1095 |
+
def const(cls, a: "Functor[A]", b: B) -> "Functor[B]":
|
| 1096 |
+
return cls.fmap(lambda _: b, a)
|
| 1097 |
+
|
| 1098 |
+
@classmethod
|
| 1099 |
+
def void(cls, a: "Functor[A]") -> "Functor[None]":
|
| 1100 |
+
return cls.const_fmap(a, None)
|
| 1101 |
+
return (Functor,)
|
| 1102 |
+
|
| 1103 |
+
|
| 1104 |
+
@app.cell(hide_code=True)
|
| 1105 |
+
def _():
|
| 1106 |
+
import marimo as mo
|
| 1107 |
+
return (mo,)
|
| 1108 |
+
|
| 1109 |
+
|
| 1110 |
+
@app.cell(hide_code=True)
|
| 1111 |
+
def _():
|
| 1112 |
+
from dataclasses import dataclass
|
| 1113 |
+
from abc import ABC, abstractmethod
|
| 1114 |
+
from typing import TypeVar, Union
|
| 1115 |
+
from collections.abc import Callable
|
| 1116 |
+
return ABC, Callable, TypeVar, Union, abstractmethod, dataclass
|
| 1117 |
+
|
| 1118 |
+
|
| 1119 |
+
@app.cell(hide_code=True)
|
| 1120 |
+
def _():
|
| 1121 |
+
from itertools import product
|
| 1122 |
+
return (product,)
|
| 1123 |
+
|
| 1124 |
+
|
| 1125 |
+
@app.cell(hide_code=True)
|
| 1126 |
+
def _(TypeVar):
|
| 1127 |
+
A = TypeVar("A")
|
| 1128 |
+
B = TypeVar("B")
|
| 1129 |
+
C = TypeVar("C")
|
| 1130 |
+
return A, B, C
|
| 1131 |
+
|
| 1132 |
+
|
| 1133 |
+
@app.cell(hide_code=True)
|
| 1134 |
+
def _(mo):
|
| 1135 |
+
mo.md(
|
| 1136 |
+
r"""
|
| 1137 |
+
# Further reading
|
| 1138 |
+
|
| 1139 |
+
Notice that these reading sources are optional and non-trivial
|
| 1140 |
+
|
| 1141 |
+
- [Applicaive Programming with Effects](https://www.staff.city.ac.uk/~ross/papers/Applicative.html)
|
| 1142 |
+
- [Equivalence of Applicative Functors and
|
| 1143 |
+
Multifunctors](https://arxiv.org/pdf/2401.14286)
|
| 1144 |
+
- [Applicative functor](https://wiki.haskell.org/index.php?title=Applicative_functor)
|
| 1145 |
+
- [Control.Applicative](https://hackage.haskell.org/package/base-4.21.0.0/docs/Control-Applicative.html#t:Applicative)
|
| 1146 |
+
- [Typeclassopedia#Applicative](https://wiki.haskell.org/index.php?title=Typeclassopedia#Applicative)
|
| 1147 |
+
- [Notions of computation as monoids](https://www.cambridge.org/core/journals/journal-of-functional-programming/article/notions-of-computation-as-monoids/70019FC0F2384270E9F41B9719042528)
|
| 1148 |
+
- [Free Applicative Functors](https://arxiv.org/abs/1403.0749)
|
| 1149 |
+
- [The basics of applicative functors, put to practical work](http://www.serpentine.com/blog/2008/02/06/the-basics-of-applicative-functors-put-to-practical-work/)
|
| 1150 |
+
- [Abstracting with Applicatives](http://comonad.com/reader/2012/abstracting-with-applicatives/)
|
| 1151 |
+
- [Static analysis with Applicatives](https://gergo.erdi.hu/blog/2012-12-01-static_analysis_with_applicatives/)
|
| 1152 |
+
- [Explaining Applicative functor in categorical terms - monoidal functors](https://cstheory.stackexchange.com/questions/12412/explaining-applicative-functor-in-categorical-terms-monoidal-functors)
|
| 1153 |
+
- [Applicative, A Strong Lax Monoidal Functor](https://beuke.org/applicative/)
|
| 1154 |
+
- [Applicative Functors](https://bartoszmilewski.com/2017/02/06/applicative-functors/)
|
| 1155 |
+
"""
|
| 1156 |
+
)
|
| 1157 |
+
return
|
| 1158 |
+
|
| 1159 |
+
|
| 1160 |
+
if __name__ == "__main__":
|
| 1161 |
+
app.run()
|
functional_programming/CHANGELOG.md
CHANGED
|
@@ -1,14 +1,21 @@
|
|
| 1 |
# Changelog of the functional-programming course
|
| 2 |
|
| 3 |
-
## 2025-
|
| 4 |
|
| 5 |
-
*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
## 2025-
|
| 8 |
|
| 9 |
-
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
|
| 13 |
## 2025-03-16
|
| 14 |
|
|
@@ -34,3 +41,13 @@ Thank [Akshay](https://github.com/akshayka) and [Haleshot](https://github.com/Ha
|
|
| 34 |
- Rename `ListWrapper` to `List` for simplicity
|
| 35 |
- Remove the `Just` class
|
| 36 |
+ Rewrite proofs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Changelog of the functional-programming course
|
| 2 |
|
| 3 |
+
## 2025-04-07
|
| 4 |
|
| 5 |
+
* the `apply` method of `Maybe` *Applicative* should return `None` when `fg` or `fa` is `None`
|
| 6 |
+
+ add `sequenceL` as a classmethod for `Applicative` and add examples for `Wrapper`, `Maybe`, `List`
|
| 7 |
+
+ add description for utility functions of `Applicative`
|
| 8 |
+
* refine the implementation of `IO` *Applicative*
|
| 9 |
+
* reimplement `get_chars` with `IO.sequenceL`
|
| 10 |
+
+ add an example to show that `ListMonoidal` is equivalent to `List` *Applicative*
|
| 11 |
|
| 12 |
+
## 2025-04-06
|
| 13 |
|
| 14 |
+
- remove `sequenceL` from `Applicative` because it should be a classmethod but can't be generically implemented
|
| 15 |
|
| 16 |
+
## 2025-04-02
|
| 17 |
+
|
| 18 |
+
* `0.1.0` version of notebook `06_applicatives.py`
|
| 19 |
|
| 20 |
## 2025-03-16
|
| 21 |
|
|
|
|
| 41 |
- Rename `ListWrapper` to `List` for simplicity
|
| 42 |
- Remove the `Just` class
|
| 43 |
+ Rewrite proofs
|
| 44 |
+
|
| 45 |
+
## 2025-03-13
|
| 46 |
+
|
| 47 |
+
* `0.1.0` version of notebook `05_functors`
|
| 48 |
+
|
| 49 |
+
Thank [Akshay](https://github.com/akshayka) and [Haleshot](https://github.com/Haleshot) for reviewing
|
| 50 |
+
|
| 51 |
+
## 2025-03-11
|
| 52 |
+
|
| 53 |
+
* Demo version of notebook `05_functors.py`
|