Spaces:
Sleeping
Sleeping
Merge pull request #76 from marimo-team/haleshot/015_poisson
Browse files
probability/15_poisson_distribution.py
ADDED
|
@@ -0,0 +1,805 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "marimo",
|
| 5 |
+
# "matplotlib==3.10.0",
|
| 6 |
+
# "numpy==2.2.4",
|
| 7 |
+
# "scipy==1.15.2",
|
| 8 |
+
# "altair==5.2.0",
|
| 9 |
+
# "wigglystuff==0.1.10",
|
| 10 |
+
# "pandas==2.2.3",
|
| 11 |
+
# ]
|
| 12 |
+
# ///
|
| 13 |
+
|
| 14 |
+
import marimo
|
| 15 |
+
|
| 16 |
+
__generated_with = "0.11.25"
|
| 17 |
+
app = marimo.App(width="medium", app_title="Poisson Distribution")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@app.cell(hide_code=True)
|
| 21 |
+
def _(mo):
|
| 22 |
+
mo.md(
|
| 23 |
+
r"""
|
| 24 |
+
# Poisson Distribution
|
| 25 |
+
|
| 26 |
+
_This notebook is a computational companion to ["Probability for Computer Scientists"](https://chrispiech.github.io/probabilityForComputerScientists/en/part2/poisson/), by Stanford professor Chris Piech._
|
| 27 |
+
|
| 28 |
+
A Poisson random variable gives the probability of a given number of events in a fixed interval of time (or space). It makes the Poisson assumption that events occur with a known constant mean rate and independently of the time since the last event.
|
| 29 |
+
"""
|
| 30 |
+
)
|
| 31 |
+
return
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@app.cell(hide_code=True)
|
| 35 |
+
def _(mo):
|
| 36 |
+
mo.md(
|
| 37 |
+
r"""
|
| 38 |
+
## Poisson Random Variable Definition
|
| 39 |
+
|
| 40 |
+
$X \sim \text{Poisson}(\lambda)$ represents a Poisson random variable where:
|
| 41 |
+
|
| 42 |
+
- $X$ is our random variable (number of events)
|
| 43 |
+
- $\text{Poisson}$ indicates it follows a Poisson distribution
|
| 44 |
+
- $\lambda$ is the rate parameter (average number of events per time interval)
|
| 45 |
+
|
| 46 |
+
```
|
| 47 |
+
X ~ Poisson(λ)
|
| 48 |
+
↑ ↑ ↑
|
| 49 |
+
| | +-- Rate parameter:
|
| 50 |
+
| | average number of
|
| 51 |
+
| | events per interval
|
| 52 |
+
| +-- Indicates Poisson
|
| 53 |
+
| distribution
|
| 54 |
+
|
|
| 55 |
+
Our random variable
|
| 56 |
+
counting number of events
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
The Poisson distribution is particularly useful when:
|
| 60 |
+
|
| 61 |
+
1. Events occur independently of each other
|
| 62 |
+
2. The average rate of occurrence is constant
|
| 63 |
+
3. Two events cannot occur at exactly the same instant
|
| 64 |
+
4. The probability of an event is proportional to the length of the time interval
|
| 65 |
+
"""
|
| 66 |
+
)
|
| 67 |
+
return
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@app.cell(hide_code=True)
|
| 71 |
+
def _(mo):
|
| 72 |
+
mo.md(
|
| 73 |
+
r"""
|
| 74 |
+
## Properties of Poisson Distribution
|
| 75 |
+
|
| 76 |
+
| Property | Formula |
|
| 77 |
+
|----------|---------|
|
| 78 |
+
| Notation | $X \sim \text{Poisson}(\lambda)$ |
|
| 79 |
+
| Description | Number of events in a fixed time frame if (a) events occur with a constant mean rate and (b) they occur independently of time since last event |
|
| 80 |
+
| Parameters | $\lambda \in \mathbb{R}^{+}$, the constant average rate |
|
| 81 |
+
| Support | $x \in \{0, 1, \dots\}$ |
|
| 82 |
+
| PMF equation | $P(X=x) = \frac{\lambda^x e^{-\lambda}}{x!}$ |
|
| 83 |
+
| Expectation | $E[X] = \lambda$ |
|
| 84 |
+
| Variance | $\text{Var}(X) = \lambda$ |
|
| 85 |
+
|
| 86 |
+
Note that unlike many other distributions, the Poisson distribution's mean and variance are equal, both being $\lambda$.
|
| 87 |
+
|
| 88 |
+
Let's explore how the Poisson distribution changes with different rate parameters.
|
| 89 |
+
"""
|
| 90 |
+
)
|
| 91 |
+
return
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
@app.cell(hide_code=True)
|
| 95 |
+
def _(TangleSlider, mo):
|
| 96 |
+
# interactive elements using TangleSlider
|
| 97 |
+
lambda_slider = mo.ui.anywidget(TangleSlider(
|
| 98 |
+
amount=5,
|
| 99 |
+
min_value=0.1,
|
| 100 |
+
max_value=20,
|
| 101 |
+
step=0.1,
|
| 102 |
+
digits=1,
|
| 103 |
+
suffix=" events"
|
| 104 |
+
))
|
| 105 |
+
|
| 106 |
+
# interactive controls
|
| 107 |
+
_controls = mo.vstack([
|
| 108 |
+
mo.md("### Adjust the Rate Parameter to See How Poisson Distribution Changes"),
|
| 109 |
+
mo.hstack([
|
| 110 |
+
mo.md("**Rate parameter (λ):** "),
|
| 111 |
+
lambda_slider,
|
| 112 |
+
mo.md("**events per interval.** Higher values shift the distribution rightward and make it more spread out.")
|
| 113 |
+
], justify="start"),
|
| 114 |
+
])
|
| 115 |
+
_controls
|
| 116 |
+
return (lambda_slider,)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@app.cell(hide_code=True)
|
| 120 |
+
def _(lambda_slider, np, plt, stats):
|
| 121 |
+
def create_poisson_pmf_plot(lambda_value):
|
| 122 |
+
"""Create a visualization of Poisson PMF with annotations for mean and variance."""
|
| 123 |
+
# PMF for values
|
| 124 |
+
max_x = max(20, int(lambda_value * 3)) # Show at least up to 3*lambda
|
| 125 |
+
x = np.arange(0, max_x + 1)
|
| 126 |
+
pmf = stats.poisson.pmf(x, lambda_value)
|
| 127 |
+
|
| 128 |
+
# Relevant key statistics
|
| 129 |
+
mean = lambda_value # For Poisson, mean = lambda
|
| 130 |
+
variance = lambda_value # For Poisson, variance = lambda
|
| 131 |
+
std_dev = np.sqrt(variance)
|
| 132 |
+
|
| 133 |
+
# plot
|
| 134 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 135 |
+
|
| 136 |
+
# PMF as bars
|
| 137 |
+
ax.bar(x, pmf, color='royalblue', alpha=0.7, label=f'PMF: P(X=k)')
|
| 138 |
+
|
| 139 |
+
# for the PMF values
|
| 140 |
+
ax.plot(x, pmf, 'ro-', alpha=0.6, label='PMF line')
|
| 141 |
+
|
| 142 |
+
# Vertical lines - mean and key values
|
| 143 |
+
ax.axvline(x=mean, color='green', linestyle='--', linewidth=2,
|
| 144 |
+
label=f'Mean: {mean:.2f}')
|
| 145 |
+
|
| 146 |
+
# Stdev region
|
| 147 |
+
ax.axvspan(mean - std_dev, mean + std_dev, alpha=0.2, color='green',
|
| 148 |
+
label=f'±1 Std Dev: {std_dev:.2f}')
|
| 149 |
+
|
| 150 |
+
ax.set_xlabel('Number of Events (k)')
|
| 151 |
+
ax.set_ylabel('Probability: P(X=k)')
|
| 152 |
+
ax.set_title(f'Poisson Distribution with λ={lambda_value:.1f}')
|
| 153 |
+
|
| 154 |
+
# annotations
|
| 155 |
+
ax.annotate(f'E[X] = {mean:.2f}',
|
| 156 |
+
xy=(mean, stats.poisson.pmf(int(mean), lambda_value)),
|
| 157 |
+
xytext=(mean + 1, max(pmf) * 0.8),
|
| 158 |
+
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
|
| 159 |
+
|
| 160 |
+
ax.annotate(f'Var(X) = {variance:.2f}',
|
| 161 |
+
xy=(mean, stats.poisson.pmf(int(mean), lambda_value) / 2),
|
| 162 |
+
xytext=(mean + 1, max(pmf) * 0.6),
|
| 163 |
+
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
|
| 164 |
+
|
| 165 |
+
ax.grid(alpha=0.3)
|
| 166 |
+
ax.legend()
|
| 167 |
+
|
| 168 |
+
plt.tight_layout()
|
| 169 |
+
return plt.gca()
|
| 170 |
+
|
| 171 |
+
# Get parameter from slider and create plot
|
| 172 |
+
_lambda = lambda_slider.amount
|
| 173 |
+
create_poisson_pmf_plot(_lambda)
|
| 174 |
+
return (create_poisson_pmf_plot,)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
@app.cell(hide_code=True)
|
| 178 |
+
def _(mo):
|
| 179 |
+
mo.md(
|
| 180 |
+
r"""
|
| 181 |
+
## Poisson Intuition: Relation to Binomial Distribution
|
| 182 |
+
|
| 183 |
+
The Poisson distribution can be derived as a limiting case of the [binomial distribution](http://marimo.app/https://github.com/marimo-team/learn/blob/main/probability/14_binomial_distribution.py).
|
| 184 |
+
|
| 185 |
+
Let's work on a practical example: predicting the number of ride-sharing requests in a specific area over a one-minute interval. From historical data, we know that the average number of requests per minute is $\lambda = 5$.
|
| 186 |
+
|
| 187 |
+
We could approximate this using a binomial distribution by dividing our minute into smaller intervals. For example, we can divide a minute into 60 seconds and treat each second as a [Bernoulli trial](http://marimo.app/https://github.com/marimo-team/learn/blob/main/probability/13_bernoulli_distribution.py) - either there's a request (success) or there isn't (failure).
|
| 188 |
+
|
| 189 |
+
Let's visualize this concept:
|
| 190 |
+
"""
|
| 191 |
+
)
|
| 192 |
+
return
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
@app.cell(hide_code=True)
|
| 196 |
+
def _(fig_to_image, mo, plt):
|
| 197 |
+
def create_time_division_visualization():
|
| 198 |
+
# visualization of dividing a minute into 60 seconds
|
| 199 |
+
fig, ax = plt.subplots(figsize=(12, 2))
|
| 200 |
+
|
| 201 |
+
# Example events hardcoded at 2.75s and 7.12s
|
| 202 |
+
events = [2.75, 7.12]
|
| 203 |
+
|
| 204 |
+
# array of 60 rectangles
|
| 205 |
+
for i in range(60):
|
| 206 |
+
color = 'royalblue' if any(i <= e < i+1 for e in events) else 'lightgray'
|
| 207 |
+
ax.add_patch(plt.Rectangle((i, 0), 0.9, 1, color=color))
|
| 208 |
+
|
| 209 |
+
# markers for events
|
| 210 |
+
for e in events:
|
| 211 |
+
ax.plot(e, 0.5, 'ro', markersize=10)
|
| 212 |
+
|
| 213 |
+
# labels
|
| 214 |
+
ax.set_xlim(0, 60)
|
| 215 |
+
ax.set_ylim(0, 1)
|
| 216 |
+
ax.set_yticks([])
|
| 217 |
+
ax.set_xticks([0, 15, 30, 45, 60])
|
| 218 |
+
ax.set_xticklabels(['0s', '15s', '30s', '45s', '60s'])
|
| 219 |
+
ax.set_xlabel('Time (seconds)')
|
| 220 |
+
ax.set_title('One Minute Divided into 60 Second Intervals')
|
| 221 |
+
|
| 222 |
+
plt.tight_layout()
|
| 223 |
+
plt.gca()
|
| 224 |
+
return fig, events, i
|
| 225 |
+
|
| 226 |
+
# Create visualization and convert to image
|
| 227 |
+
_fig, _events, i = create_time_division_visualization()
|
| 228 |
+
_img = mo.image(fig_to_image(_fig), width="100%")
|
| 229 |
+
|
| 230 |
+
# explanation
|
| 231 |
+
_explanation = mo.md(
|
| 232 |
+
r"""
|
| 233 |
+
In this visualization:
|
| 234 |
+
|
| 235 |
+
- Each rectangle represents a 1-second interval
|
| 236 |
+
- Blue rectangles indicate intervals where an event occurred
|
| 237 |
+
- Red dots show the actual event times (2.75s and 7.12s)
|
| 238 |
+
|
| 239 |
+
If we treat this as a binomial experiment with 60 trials (seconds), we can calculate probabilities using the binomial PMF. But there's a problem: what if multiple events occur within the same second? To address this, we can divide our minute into smaller intervals.
|
| 240 |
+
"""
|
| 241 |
+
)
|
| 242 |
+
mo.vstack([_fig, _explanation])
|
| 243 |
+
return create_time_division_visualization, i
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
@app.cell(hide_code=True)
|
| 247 |
+
def _(mo):
|
| 248 |
+
mo.md(
|
| 249 |
+
r"""
|
| 250 |
+
The total number of requests received over the minute can be approximated as the sum of the sixty indicator variables, which conveniently matches the description of a binomial — a sum of Bernoullis.
|
| 251 |
+
|
| 252 |
+
Specifically, if we define $X$ to be the number of requests in a minute, $X$ is a binomial with $n=60$ trials. What is the probability, $p$, of a success on a single trial? To make the expectation of $X$ equal the observed historical average $\lambda$, we should choose $p$ so that:
|
| 253 |
+
|
| 254 |
+
\begin{align}
|
| 255 |
+
\lambda &= E[X] && \text{Expectation matches historical average} \\
|
| 256 |
+
\lambda &= n \cdot p && \text{Expectation of a Binomial is } n \cdot p \\
|
| 257 |
+
p &= \frac{\lambda}{n} && \text{Solving for $p$}
|
| 258 |
+
\end{align}
|
| 259 |
+
|
| 260 |
+
In this case, since $\lambda=5$ and $n=60$, we should choose $p=\frac{5}{60}=\frac{1}{12}$ and state that $X \sim \text{Bin}(n=60, p=\frac{5}{60})$. Now we can calculate the probability of different numbers of requests using the binomial PMF:
|
| 261 |
+
|
| 262 |
+
$P(X = x) = {n \choose x} p^x (1-p)^{n-x}$
|
| 263 |
+
|
| 264 |
+
For example:
|
| 265 |
+
|
| 266 |
+
\begin{align}
|
| 267 |
+
P(X=1) &= {60 \choose 1} (5/60)^1 (55/60)^{60-1} \approx 0.0295 \\
|
| 268 |
+
P(X=2) &= {60 \choose 2} (5/60)^2 (55/60)^{60-2} \approx 0.0790 \\
|
| 269 |
+
P(X=3) &= {60 \choose 3} (5/60)^3 (55/60)^{60-3} \approx 0.1389
|
| 270 |
+
\end{align}
|
| 271 |
+
|
| 272 |
+
This is a good approximation, but it doesn't account for the possibility of multiple events in a single second. One solution is to divide our minute into even more fine-grained intervals. Let's try 600 deciseconds (tenths of a second):
|
| 273 |
+
"""
|
| 274 |
+
)
|
| 275 |
+
return
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
@app.cell(hide_code=True)
|
| 279 |
+
def _(fig_to_image, mo, plt):
|
| 280 |
+
def create_decisecond_visualization(e_value):
|
| 281 |
+
# (Just showing the first 100 for clarity)
|
| 282 |
+
fig, ax = plt.subplots(figsize=(12, 2))
|
| 283 |
+
|
| 284 |
+
# Example events at 2.75s and 7.12s (convert to deciseconds)
|
| 285 |
+
events = [27.5, 71.2]
|
| 286 |
+
|
| 287 |
+
for i in range(100):
|
| 288 |
+
color = 'royalblue' if any(i <= event_val < i + 1 for event_val in events) else 'lightgray'
|
| 289 |
+
ax.add_patch(plt.Rectangle((i, 0), 0.9, 1, color=color))
|
| 290 |
+
|
| 291 |
+
# Markers for events
|
| 292 |
+
for event in events:
|
| 293 |
+
if event < 100: # Only show events in our visible range
|
| 294 |
+
ax.plot(event/10, 0.5, 'ro', markersize=10) # Divide by 10 to convert to deciseconds
|
| 295 |
+
|
| 296 |
+
# Add labels
|
| 297 |
+
ax.set_xlim(0, 100)
|
| 298 |
+
ax.set_ylim(0, 1)
|
| 299 |
+
ax.set_yticks([])
|
| 300 |
+
ax.set_xticks([0, 20, 40, 60, 80, 100])
|
| 301 |
+
ax.set_xticklabels(['0s', '2s', '4s', '6s', '8s', '10s'])
|
| 302 |
+
ax.set_xlabel('Time (first 10 seconds shown)')
|
| 303 |
+
ax.set_title('One Minute Divided into 600 Decisecond Intervals (first 100 shown)')
|
| 304 |
+
|
| 305 |
+
plt.tight_layout()
|
| 306 |
+
plt.gca()
|
| 307 |
+
return fig
|
| 308 |
+
|
| 309 |
+
# Create viz and convert to image
|
| 310 |
+
_fig = create_decisecond_visualization(e_value=5)
|
| 311 |
+
_img = mo.image(fig_to_image(_fig), width="100%")
|
| 312 |
+
|
| 313 |
+
# Explanation
|
| 314 |
+
_explanation = mo.md(
|
| 315 |
+
r"""
|
| 316 |
+
With $n=600$ and $p=\frac{5}{600}=\frac{1}{120}$, we can recalculate our probabilities:
|
| 317 |
+
|
| 318 |
+
\begin{align}
|
| 319 |
+
P(X=1) &= {600 \choose 1} (5/600)^1 (595/600)^{600-1} \approx 0.0333 \\
|
| 320 |
+
P(X=2) &= {600 \choose 2} (5/600)^2 (595/600)^{600-2} \approx 0.0837 \\
|
| 321 |
+
P(X=3) &= {600 \choose 3} (5/600)^3 (595/600)^{600-3} \approx 0.1402
|
| 322 |
+
\end{align}
|
| 323 |
+
|
| 324 |
+
As we make our intervals smaller (increasing $n$), our approximation becomes more accurate.
|
| 325 |
+
"""
|
| 326 |
+
)
|
| 327 |
+
mo.vstack([_fig, _explanation])
|
| 328 |
+
return (create_decisecond_visualization,)
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
@app.cell(hide_code=True)
|
| 332 |
+
def _(mo):
|
| 333 |
+
mo.md(
|
| 334 |
+
r"""
|
| 335 |
+
## The Binomial Distribution in the Limit
|
| 336 |
+
|
| 337 |
+
What happens if we continue dividing our time interval into smaller and smaller pieces? Let's explore how the probabilities change as we increase the number of intervals:
|
| 338 |
+
"""
|
| 339 |
+
)
|
| 340 |
+
return
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
@app.cell(hide_code=True)
|
| 344 |
+
def _(mo):
|
| 345 |
+
intervals_slider = mo.ui.slider(
|
| 346 |
+
start = 60,
|
| 347 |
+
stop = 10000,
|
| 348 |
+
step=100,
|
| 349 |
+
value=600,
|
| 350 |
+
label="Number of intervals to divide a minute")
|
| 351 |
+
return (intervals_slider,)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
@app.cell(hide_code=True)
|
| 355 |
+
def _(intervals_slider):
|
| 356 |
+
intervals_slider
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
@app.cell(hide_code=True)
|
| 361 |
+
def _(intervals_slider, np, pd, plt, stats):
|
| 362 |
+
def create_comparison_plot(n, lambda_value):
|
| 363 |
+
# Calculate probability
|
| 364 |
+
p = lambda_value / n
|
| 365 |
+
|
| 366 |
+
# Binomial probabilities
|
| 367 |
+
x_values = np.arange(0, 15)
|
| 368 |
+
binom_pmf = stats.binom.pmf(x_values, n, p)
|
| 369 |
+
|
| 370 |
+
# True Poisson probabilities
|
| 371 |
+
poisson_pmf = stats.poisson.pmf(x_values, lambda_value)
|
| 372 |
+
|
| 373 |
+
# DF for comparison
|
| 374 |
+
df = pd.DataFrame({
|
| 375 |
+
'Events': x_values,
|
| 376 |
+
f'Binomial(n={n}, p={p:.6f})': binom_pmf,
|
| 377 |
+
f'Poisson(λ=5)': poisson_pmf,
|
| 378 |
+
'Difference': np.abs(binom_pmf - poisson_pmf)
|
| 379 |
+
})
|
| 380 |
+
|
| 381 |
+
# Plot both PMFs
|
| 382 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 383 |
+
|
| 384 |
+
# Bar plot for the binomial
|
| 385 |
+
ax.bar(x_values - 0.2, binom_pmf, width=0.4, alpha=0.7,
|
| 386 |
+
color='royalblue', label=f'Binomial(n={n}, p={p:.6f})')
|
| 387 |
+
|
| 388 |
+
# Bar plot for the Poisson
|
| 389 |
+
ax.bar(x_values + 0.2, poisson_pmf, width=0.4, alpha=0.7,
|
| 390 |
+
color='crimson', label='Poisson(λ=5)')
|
| 391 |
+
|
| 392 |
+
# Labels and title
|
| 393 |
+
ax.set_xlabel('Number of Events (k)')
|
| 394 |
+
ax.set_ylabel('Probability')
|
| 395 |
+
ax.set_title(f'Comparison of Binomial and Poisson PMFs with n={n}')
|
| 396 |
+
ax.legend()
|
| 397 |
+
ax.set_xticks(x_values)
|
| 398 |
+
ax.grid(alpha=0.3)
|
| 399 |
+
|
| 400 |
+
plt.tight_layout()
|
| 401 |
+
return df, fig, n, p
|
| 402 |
+
|
| 403 |
+
# Number of intervals from the slider
|
| 404 |
+
n = intervals_slider.value
|
| 405 |
+
_lambda = 5 # Fixed lambda for our example
|
| 406 |
+
|
| 407 |
+
# Cromparison plot
|
| 408 |
+
df, fig, n, p = create_comparison_plot(n, _lambda)
|
| 409 |
+
return create_comparison_plot, df, fig, n, p
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
@app.cell(hide_code=True)
|
| 413 |
+
def _(df, fig, fig_to_image, mo, n, p):
|
| 414 |
+
# table of values
|
| 415 |
+
_styled_df = df.style.format({
|
| 416 |
+
f'Binomial(n={n}, p={p:.6f})': '{:.6f}',
|
| 417 |
+
f'Poisson(λ=5)': '{:.6f}',
|
| 418 |
+
'Difference': '{:.6f}'
|
| 419 |
+
})
|
| 420 |
+
|
| 421 |
+
# Calculate the max absolute difference
|
| 422 |
+
_max_diff = df['Difference'].max()
|
| 423 |
+
|
| 424 |
+
# output
|
| 425 |
+
_chart = mo.image(fig_to_image(fig), width="100%")
|
| 426 |
+
_explanation = mo.md(f"**Maximum absolute difference between distributions: {_max_diff:.6f}**")
|
| 427 |
+
_table = mo.ui.table(df)
|
| 428 |
+
|
| 429 |
+
mo.vstack([_chart, _explanation, _table])
|
| 430 |
+
return
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
@app.cell(hide_code=True)
|
| 434 |
+
def _(mo):
|
| 435 |
+
mo.md(
|
| 436 |
+
r"""
|
| 437 |
+
As you can see from the interactive comparison above, as the number of intervals increases, the binomial distribution approaches the Poisson distribution! This is not a coincidence - the Poisson distribution is actually the limiting case of the binomial distribution when:
|
| 438 |
+
|
| 439 |
+
- The number of trials $n$ approaches infinity
|
| 440 |
+
- The probability of success $p$ approaches zero
|
| 441 |
+
- The product $np = \lambda$ remains constant
|
| 442 |
+
|
| 443 |
+
This relationship is why the Poisson distribution is so useful - it's easier to work with than a binomial with a very large number of trials and a very small probability of success.
|
| 444 |
+
|
| 445 |
+
## Derivation of the Poisson PMF
|
| 446 |
+
|
| 447 |
+
Let's derive the Poisson PMF by taking the limit of the binomial PMF as $n \to \infty$. We start with:
|
| 448 |
+
|
| 449 |
+
$P(X=x) = \lim_{n \rightarrow \infty} {n \choose x} (\lambda / n)^x(1-\lambda/n)^{n-x}$
|
| 450 |
+
|
| 451 |
+
While this expression looks intimidating, it simplifies nicely:
|
| 452 |
+
|
| 453 |
+
\begin{align}
|
| 454 |
+
P(X=x)
|
| 455 |
+
&= \lim_{n \rightarrow \infty} {n \choose x} (\lambda / n)^x(1-\lambda/n)^{n-x}
|
| 456 |
+
&& \text{Start: binomial in the limit}\\
|
| 457 |
+
&= \lim_{n \rightarrow \infty}
|
| 458 |
+
{n \choose x} \cdot
|
| 459 |
+
\frac{\lambda^x}{n^x} \cdot
|
| 460 |
+
\frac{(1-\lambda/n)^{n}}{(1-\lambda/n)^{x}}
|
| 461 |
+
&& \text{Expanding the power terms} \\
|
| 462 |
+
&= \lim_{n \rightarrow \infty}
|
| 463 |
+
\frac{n!}{(n-x)!x!} \cdot
|
| 464 |
+
\frac{\lambda^x}{n^x} \cdot
|
| 465 |
+
\frac{(1-\lambda/n)^{n}}{(1-\lambda/n)^{x}}
|
| 466 |
+
&& \text{Expanding the binomial term} \\
|
| 467 |
+
&= \lim_{n \rightarrow \infty}
|
| 468 |
+
\frac{n!}{(n-x)!x!} \cdot
|
| 469 |
+
\frac{\lambda^x}{n^x} \cdot
|
| 470 |
+
\frac{e^{-\lambda}}{(1-\lambda/n)^{x}}
|
| 471 |
+
&& \text{Using limit rule } \lim_{n \rightarrow \infty}(1-\lambda/n)^{n} = e^{-\lambda}\\
|
| 472 |
+
&= \lim_{n \rightarrow \infty}
|
| 473 |
+
\frac{n!}{(n-x)!x!} \cdot
|
| 474 |
+
\frac{\lambda^x}{n^x} \cdot
|
| 475 |
+
\frac{e^{-\lambda}}{1}
|
| 476 |
+
&& \text{As } n \to \infty \text{, } \lambda/n \to 0\\
|
| 477 |
+
&= \lim_{n \rightarrow \infty}
|
| 478 |
+
\frac{n!}{(n-x)!} \cdot
|
| 479 |
+
\frac{1}{x!} \cdot
|
| 480 |
+
\frac{\lambda^x}{n^x} \cdot
|
| 481 |
+
e^{-\lambda}
|
| 482 |
+
&& \text{Rearranging terms}\\
|
| 483 |
+
&= \lim_{n \rightarrow \infty}
|
| 484 |
+
\frac{n^x}{1} \cdot
|
| 485 |
+
\frac{1}{x!} \cdot
|
| 486 |
+
\frac{\lambda^x}{n^x} \cdot
|
| 487 |
+
e^{-\lambda}
|
| 488 |
+
&& \text{As } n \to \infty \text{, } \frac{n!}{(n-x)!} \approx n^x\\
|
| 489 |
+
&= \lim_{n \rightarrow \infty}
|
| 490 |
+
\frac{\lambda^x}{x!} \cdot
|
| 491 |
+
e^{-\lambda}
|
| 492 |
+
&& \text{Canceling } n^x\\
|
| 493 |
+
&=
|
| 494 |
+
\frac{\lambda^x \cdot e^{-\lambda}}{x!}
|
| 495 |
+
&& \text{Simplifying}\\
|
| 496 |
+
\end{align}
|
| 497 |
+
|
| 498 |
+
This gives us our elegant Poisson PMF formula: $P(X=x) = \frac{\lambda^x \cdot e^{-\lambda}}{x!}$
|
| 499 |
+
"""
|
| 500 |
+
)
|
| 501 |
+
return
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
@app.cell(hide_code=True)
|
| 505 |
+
def _(mo):
|
| 506 |
+
mo.md(
|
| 507 |
+
r"""
|
| 508 |
+
## Poisson Distribution in Python
|
| 509 |
+
|
| 510 |
+
Python's `scipy.stats` module provides functions to work with the Poisson distribution. Let's see how to calculate probabilities and generate random samples.
|
| 511 |
+
|
| 512 |
+
First, let's calculate some probabilities for our ride-sharing example with $\lambda = 5$:
|
| 513 |
+
"""
|
| 514 |
+
)
|
| 515 |
+
return
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
@app.cell
|
| 519 |
+
def _(stats):
|
| 520 |
+
_lambda = 5
|
| 521 |
+
|
| 522 |
+
# Calculate probabilities for X = 1, 2, 3
|
| 523 |
+
p_1 = stats.poisson.pmf(1, _lambda)
|
| 524 |
+
p_2 = stats.poisson.pmf(2, _lambda)
|
| 525 |
+
p_3 = stats.poisson.pmf(3, _lambda)
|
| 526 |
+
|
| 527 |
+
print(f"P(X=1) = {p_1:.5f}")
|
| 528 |
+
print(f"P(X=2) = {p_2:.5f}")
|
| 529 |
+
print(f"P(X=3) = {p_3:.5f}")
|
| 530 |
+
|
| 531 |
+
# Calculate cumulative probability P(X ≤ 3)
|
| 532 |
+
p_leq_3 = stats.poisson.cdf(3, _lambda)
|
| 533 |
+
print(f"P(X≤3) = {p_leq_3:.5f}")
|
| 534 |
+
|
| 535 |
+
# Calculate probability P(X > 10)
|
| 536 |
+
p_gt_10 = 1 - stats.poisson.cdf(10, _lambda)
|
| 537 |
+
print(f"P(X>10) = {p_gt_10:.5f}")
|
| 538 |
+
return p_1, p_2, p_3, p_gt_10, p_leq_3
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
@app.cell(hide_code=True)
|
| 542 |
+
def _(mo):
|
| 543 |
+
mo.md(r"""We can also generate random samples from a Poisson distribution and visualize their distribution:""")
|
| 544 |
+
return
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
@app.cell(hide_code=True)
|
| 548 |
+
def _(np, plt, stats):
|
| 549 |
+
def create_samples_plot(lambda_value, sample_size=1000):
|
| 550 |
+
# Random samples
|
| 551 |
+
samples = stats.poisson.rvs(lambda_value, size=sample_size)
|
| 552 |
+
|
| 553 |
+
# theoretical PMF
|
| 554 |
+
x_values = np.arange(0, max(samples) + 1)
|
| 555 |
+
pmf_values = stats.poisson.pmf(x_values, lambda_value)
|
| 556 |
+
|
| 557 |
+
# histograms to compare
|
| 558 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 559 |
+
|
| 560 |
+
# samples as a histogram
|
| 561 |
+
ax.hist(samples, bins=np.arange(-0.5, max(samples) + 1.5, 1),
|
| 562 |
+
alpha=0.7, density=True, label='Random Samples')
|
| 563 |
+
|
| 564 |
+
# theoretical PMF
|
| 565 |
+
ax.plot(x_values, pmf_values, 'ro-', label='Theoretical PMF')
|
| 566 |
+
|
| 567 |
+
# labels and title
|
| 568 |
+
ax.set_xlabel('Number of Events')
|
| 569 |
+
ax.set_ylabel('Relative Frequency / Probability')
|
| 570 |
+
ax.set_title(f'1000 Random Samples from Poisson(λ={lambda_value})')
|
| 571 |
+
ax.legend()
|
| 572 |
+
ax.grid(alpha=0.3)
|
| 573 |
+
|
| 574 |
+
# annotations
|
| 575 |
+
ax.annotate(f'Sample Mean: {np.mean(samples):.2f}',
|
| 576 |
+
xy=(0.7, 0.9), xycoords='axes fraction',
|
| 577 |
+
bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.3))
|
| 578 |
+
ax.annotate(f'Theoretical Mean: {lambda_value:.2f}',
|
| 579 |
+
xy=(0.7, 0.8), xycoords='axes fraction',
|
| 580 |
+
bbox=dict(boxstyle='round,pad=0.5', fc='lightgreen', alpha=0.3))
|
| 581 |
+
|
| 582 |
+
plt.tight_layout()
|
| 583 |
+
return plt.gca()
|
| 584 |
+
|
| 585 |
+
# Use a lambda value of 5 for this example
|
| 586 |
+
_lambda = 5
|
| 587 |
+
create_samples_plot(_lambda)
|
| 588 |
+
return (create_samples_plot,)
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
@app.cell(hide_code=True)
|
| 592 |
+
def _(mo):
|
| 593 |
+
mo.md(
|
| 594 |
+
r"""
|
| 595 |
+
## Changing Time Frames
|
| 596 |
+
|
| 597 |
+
One important property of the Poisson distribution is that the rate parameter $\lambda$ scales linearly with the time interval. If events occur at a rate of $\lambda$ per unit time, then over a period of $t$ units, the rate parameter becomes $\lambda \cdot t$.
|
| 598 |
+
|
| 599 |
+
For example, if a website receives an average of 5 requests per minute, what is the distribution of requests over a 20-minute period?
|
| 600 |
+
|
| 601 |
+
The rate parameter for the 20-minute period would be $\lambda = 5 \cdot 20 = 100$ requests.
|
| 602 |
+
"""
|
| 603 |
+
)
|
| 604 |
+
return
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
@app.cell(hide_code=True)
|
| 608 |
+
def _(mo):
|
| 609 |
+
rate_slider = mo.ui.slider(
|
| 610 |
+
start = 0.1,
|
| 611 |
+
stop = 10,
|
| 612 |
+
step=0.1,
|
| 613 |
+
value=5,
|
| 614 |
+
label="Rate per unit time (λ)"
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
time_slider = mo.ui.slider(
|
| 618 |
+
start = 1,
|
| 619 |
+
stop = 60,
|
| 620 |
+
step=1,
|
| 621 |
+
value=20,
|
| 622 |
+
label="Time period (t units)"
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
controls = mo.vstack([
|
| 626 |
+
mo.md("### Adjust Parameters to See How Time Scaling Works"),
|
| 627 |
+
mo.hstack([rate_slider, time_slider], justify="space-between")
|
| 628 |
+
])
|
| 629 |
+
return controls, rate_slider, time_slider
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
@app.cell
|
| 633 |
+
def _(controls):
|
| 634 |
+
controls.center()
|
| 635 |
+
return
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
@app.cell(hide_code=True)
|
| 639 |
+
def _(mo, np, plt, rate_slider, stats, time_slider):
|
| 640 |
+
def create_time_scaling_plot(rate, time_period):
|
| 641 |
+
# scaled rate parameter
|
| 642 |
+
lambda_value = rate * time_period
|
| 643 |
+
|
| 644 |
+
# PMF for values
|
| 645 |
+
max_x = max(30, int(lambda_value * 1.5))
|
| 646 |
+
x = np.arange(0, max_x + 1)
|
| 647 |
+
pmf = stats.poisson.pmf(x, lambda_value)
|
| 648 |
+
|
| 649 |
+
# plot
|
| 650 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 651 |
+
|
| 652 |
+
# PMF as bars
|
| 653 |
+
ax.bar(x, pmf, color='royalblue', alpha=0.7,
|
| 654 |
+
label=f'PMF: Poisson(λ={lambda_value:.1f})')
|
| 655 |
+
|
| 656 |
+
# vertical line for mean
|
| 657 |
+
ax.axvline(x=lambda_value, color='red', linestyle='--', linewidth=2,
|
| 658 |
+
label=f'Mean = {lambda_value:.1f}')
|
| 659 |
+
|
| 660 |
+
# labels and title
|
| 661 |
+
ax.set_xlabel('Number of Events')
|
| 662 |
+
ax.set_ylabel('Probability')
|
| 663 |
+
ax.set_title(f'Poisson Distribution Over {time_period} Units (Rate = {rate}/unit)')
|
| 664 |
+
|
| 665 |
+
# better visualization if lambda is large
|
| 666 |
+
if lambda_value > 10:
|
| 667 |
+
ax.set_xlim(lambda_value - 4*np.sqrt(lambda_value),
|
| 668 |
+
lambda_value + 4*np.sqrt(lambda_value))
|
| 669 |
+
|
| 670 |
+
ax.legend()
|
| 671 |
+
ax.grid(alpha=0.3)
|
| 672 |
+
|
| 673 |
+
plt.tight_layout()
|
| 674 |
+
|
| 675 |
+
# Create relevant info markdown
|
| 676 |
+
info_text = f"""
|
| 677 |
+
When the rate is **{rate}** events per unit time and we observe for **{time_period}** units:
|
| 678 |
+
|
| 679 |
+
- The expected number of events is **{lambda_value:.1f}**
|
| 680 |
+
- The variance is also **{lambda_value:.1f}**
|
| 681 |
+
- The standard deviation is **{np.sqrt(lambda_value):.2f}**
|
| 682 |
+
- P(X=0) = {stats.poisson.pmf(0, lambda_value):.4f} (probability of no events)
|
| 683 |
+
- P(X≥10) = {1 - stats.poisson.cdf(9, lambda_value):.4f} (probability of 10 or more events)
|
| 684 |
+
"""
|
| 685 |
+
|
| 686 |
+
return plt.gca(), info_text
|
| 687 |
+
|
| 688 |
+
# parameters from sliders
|
| 689 |
+
_rate = rate_slider.value
|
| 690 |
+
_time = time_slider.value
|
| 691 |
+
|
| 692 |
+
# store
|
| 693 |
+
_plot, _info_text = create_time_scaling_plot(_rate, _time)
|
| 694 |
+
|
| 695 |
+
# Display info as markdown
|
| 696 |
+
info = mo.md(_info_text)
|
| 697 |
+
|
| 698 |
+
mo.vstack([_plot, info], justify="center")
|
| 699 |
+
return create_time_scaling_plot, info
|
| 700 |
+
|
| 701 |
+
|
| 702 |
+
@app.cell(hide_code=True)
|
| 703 |
+
def _(mo):
|
| 704 |
+
mo.md(
|
| 705 |
+
r"""
|
| 706 |
+
## 🤔 Test Your Understanding
|
| 707 |
+
Pick which of these statements about Poisson distributions you think are correct:
|
| 708 |
+
|
| 709 |
+
/// details | The variance of a Poisson distribution is always equal to its mean
|
| 710 |
+
✅ Correct! For a Poisson distribution with parameter $\lambda$, both the mean and variance equal $\lambda$.
|
| 711 |
+
///
|
| 712 |
+
|
| 713 |
+
/// details | The Poisson distribution can be used to model the number of successes in a fixed number of trials
|
| 714 |
+
❌ Incorrect! That's the binomial distribution. The Poisson distribution models the number of events in a fixed interval of time or space, not a fixed number of trials.
|
| 715 |
+
///
|
| 716 |
+
|
| 717 |
+
/// details | If $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$
|
| 718 |
+
✅ Correct! The sum of independent Poisson random variables is also a Poisson random variable with parameter equal to the sum of the individual parameters.
|
| 719 |
+
///
|
| 720 |
+
|
| 721 |
+
/// details | As $\lambda$ increases, the Poisson distribution approaches a normal distribution
|
| 722 |
+
✅ Correct! For large values of $\lambda$ (generally $\lambda > 10$), the Poisson distribution is approximately normal with mean $\lambda$ and variance $\lambda$.
|
| 723 |
+
///
|
| 724 |
+
|
| 725 |
+
/// details | The probability of zero events in a Poisson process is always less than the probability of one event
|
| 726 |
+
❌ Incorrect! For $\lambda < 1$, the probability of zero events ($e^{-\lambda}$) is actually greater than the probability of one event ($\lambda e^{-\lambda}$).
|
| 727 |
+
///
|
| 728 |
+
|
| 729 |
+
/// details | The Poisson distribution has a single parameter $\lambda$, which always equals the average number of events per time period
|
| 730 |
+
✅ Correct! The parameter $\lambda$ represents the average rate of events, and it uniquely defines the distribution.
|
| 731 |
+
///
|
| 732 |
+
"""
|
| 733 |
+
)
|
| 734 |
+
return
|
| 735 |
+
|
| 736 |
+
|
| 737 |
+
@app.cell(hide_code=True)
|
| 738 |
+
def _(mo):
|
| 739 |
+
mo.md(
|
| 740 |
+
r"""
|
| 741 |
+
## Summary
|
| 742 |
+
|
| 743 |
+
The Poisson distribution is one of those incredibly useful tools that shows up all over the place. I've always found it fascinating how such a simple formula can model so many real-world phenomena - from website traffic to radioactive decay.
|
| 744 |
+
|
| 745 |
+
What makes the Poisson really cool is that it emerges naturally as we try to model rare events occurring over a continuous interval. Remember that visualization where we kept dividing time into smaller and smaller chunks? As we showed, when you take a binomial distribution and let the number of trials approach infinity while keeping the expected value constant, you end up with the elegant Poisson formula.
|
| 746 |
+
|
| 747 |
+
The key things to remember about the Poisson distribution:
|
| 748 |
+
|
| 749 |
+
- It models the number of events occurring in a fixed interval of time or space, assuming events happen at a constant average rate and independently of each other
|
| 750 |
+
|
| 751 |
+
- Its PMF is given by the elegantly simple formula $P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$
|
| 752 |
+
|
| 753 |
+
- Both the mean and variance equal the parameter $\lambda$, which represents the average number of events per interval
|
| 754 |
+
|
| 755 |
+
- It's related to the binomial distribution as a limiting case when $n \to \infty$, $p \to 0$, and $np = \lambda$ remains constant
|
| 756 |
+
|
| 757 |
+
- The rate parameter scales linearly with the length of the interval - if events occur at rate $\lambda$ per unit time, then over $t$ units, the parameter becomes $\lambda t$
|
| 758 |
+
|
| 759 |
+
From modeling website traffic and customer arrivals to defects in manufacturing and radioactive decay, the Poisson distribution provides a powerful and mathematically elegant way to understand random occurrences in our world.
|
| 760 |
+
"""
|
| 761 |
+
)
|
| 762 |
+
return
|
| 763 |
+
|
| 764 |
+
|
| 765 |
+
@app.cell(hide_code=True)
|
| 766 |
+
def _(mo):
|
| 767 |
+
mo.md(r"""Appendix code (helper functions, variables, etc.):""")
|
| 768 |
+
return
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
@app.cell
|
| 772 |
+
def _():
|
| 773 |
+
import marimo as mo
|
| 774 |
+
return (mo,)
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
@app.cell(hide_code=True)
|
| 778 |
+
def _():
|
| 779 |
+
import numpy as np
|
| 780 |
+
import matplotlib.pyplot as plt
|
| 781 |
+
import scipy.stats as stats
|
| 782 |
+
import pandas as pd
|
| 783 |
+
import altair as alt
|
| 784 |
+
from wigglystuff import TangleSlider
|
| 785 |
+
return TangleSlider, alt, np, pd, plt, stats
|
| 786 |
+
|
| 787 |
+
|
| 788 |
+
@app.cell(hide_code=True)
|
| 789 |
+
def _():
|
| 790 |
+
import io
|
| 791 |
+
import base64
|
| 792 |
+
from matplotlib.figure import Figure
|
| 793 |
+
|
| 794 |
+
# Helper function to convert mpl figure to an image format mo.image can hopefully handle
|
| 795 |
+
def fig_to_image(fig):
|
| 796 |
+
buf = io.BytesIO()
|
| 797 |
+
fig.savefig(buf, format='png')
|
| 798 |
+
buf.seek(0)
|
| 799 |
+
data = f"data:image/png;base64,{base64.b64encode(buf.read()).decode('utf-8')}"
|
| 800 |
+
return data
|
| 801 |
+
return Figure, base64, fig_to_image, io
|
| 802 |
+
|
| 803 |
+
|
| 804 |
+
if __name__ == "__main__":
|
| 805 |
+
app.run()
|